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Introduction

In 2000, when Bocconi University launched its Master in Quantitative Finance, I was asked
to develop a course touching upon the many aspects of decision theory, financial economics,
and microstructure that could not otherwise fit in the tight schedule of the program. Re-
flecting this heterogeneity, the course was dubbed “Topics in Economics” and I was given
a fair amount of leeway in its development.

My only constraint was that I had to choose what I thought best and then compress it in
15 lectures. These notes detail my choices after two years of teaching “Topics in Economics”
at the Master in Quantitative Finance of Bocconi University and a similar class more aptly
named “Microeconomics of financial markets” at the Master of Economics and Finance of
the Venice International University.

The material is arranged into 15 units, upon whose contents I make no claim of origi-
nality. Each unit corresponds to a 90-minutes session. Some units (most notably, Unit 5)
contain too much stuff, reflecting either the accretion of different choices or my desire to
offer a more complete view. Unit 7 requires less time than the standard session: I usually
take advantage of the time left to begin exploring Unit 8.

I have constantly kept revising my choices (and my notes), and I will most likely do so in
the future as well, posting updates on my website at http://helios.unive.it/̃ licalzi.
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1. Expected utility and stochastic dominance

1.1 Introduction

Most decisions in finance are taken under a cloud of uncertainty. When you plan to invest
your money in a long-term portfolio, you do not know how much will its price be at the
time of disinvesting it. Therefore, you face a problem in choosing the “right” portfolio mix.
Decision theory is that branch of economic theory which works on models to help you sort
out this kind of decisions.

There are two basic sorts of models. The first class is concerned with what is known as
decisions under risk and the second class with decisions under uncertainty.

1.2 Decisions under risk

Here is a typical decision under risk. Your investment horizon is one year. There is a family
of investment funds. You must invest all of your wealth in a single fund. The return on each
fund is not known with certainty, but you know its distribution of past returns. For lack of
better information, you have decided to use this distribution as a proxy for the probability
distribution of future returns.1

Let us model this situation. There is a set C of consequences, typified by the one-
year returns you will be able to attain. There is a set A of alternatives (i.e., the funds)
out of which you must choose one. Each alternative in A is associated with a probability
distribution over the consequences. For instance, assuming there are only three funds, your
choice problem may be summarized by the following table.

Fund α Fund β Fund γ
return prob.ty return prob.ty return prob.ty
-1% 20% -3% 55% 2.5% 100%
+2% 40% +10% 45%
+5% 40%

Having described the problem, the next step is to develop a systematic way to make a
choice.
Def. 1.1 [Expected utility under risk] Define a real-valued utility function u over conse-
quences. Compute the expected value of utility for each alternative. Choose an alternative
which maximizes the expected utility.

1 The law requires an investment fund to warn you that past returns are not guaranteed. Trusting the
distribution of past returns is a choice you make at your own peril.
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How would this work in practice? Suppose that your utility function over a return of
r% in the previous example is u(r) = r. The expected utility of Fund α is

U(α) = −1 · 0.2 + 2 · 0.4 + 5 · 0.4 = 2.6.

Similarly, the expected utility of Fund β and γ are respectively U(β) = 2.85 and U(γ) = 2.5.
According to the expected utility criterion, you should go for Fund β and rank α and γ
respectively second and third.

If you had a different utility function, the ranking and your final choice might change.
For instance, if u(r) =

√
r + 3, we find U(α) ≈ 2.31, U(β) ≈ 1.62 and U(γ) ≈ 2.35. The

best choice is now γ, which however was third under the previous utility function.
All of this sounds fine in class, but let us look a bit more into it. Before you can get her

to use this, there are a few questions that your CEO would certainly like you to answer.

Is expected utility the “right” way to decide? Thank God (or free will), nobody
can pretend to answer this. Each one of us is free to develop his own way to reach a
decision. However, if you want to consider what expected utility has in it, mathematicians
have developed a partial answer. Using expected utility is equivalent to taking decisions
that satisfy three criteria: 1) consistency; 2) continuity; 3) independence.

Consistency means that your choices do not contradict each other. If you pick α over β
and β over γ, then you will pick α over γ as well. If you pick α over β, you do not pick β
over α.

Continuity means that your preferences do not change abruptly if you slightly change
the probabilities affecting your decision. If you pick α over β, it must be possible to generate
a third alternative α′ by perturbing slightly the probabilities of α and still like α′ better
than β.

Independence is the most demanding criterion. Let α and β be two alternatives. Choose
a third alternative γ. Consider two lotteries: α′ gets you α or γ with equal probability,
while β′ gets you β or γ with equal probability. If you’d pick α over β, then you should
also pick α′ over β′.

If you are willing to subscribe these three criteria simultaneously, using expected utility
guarantees that you will fulfill them. On the other hand, if you adopt expected utility
as your decision making tool, you will be (knowingly or not) obeying these criteria. The
answer I’d offer to your CEO is: “if you wish consistency, continuity and independence,
expected utility is right”.

Caveat emptor! There is plenty of examples where very reasonable people do not want to
fulfill one of the three criteria above. The most famous example originated with Allais who,
among other things, got the Nobel prize in Economics in 1988. Suppose the consequences
are given as payoffs in millions of Euro. Between the two alternatives

α β

payoff prob.ty payoff prob.ty
0 1% 1 100%
1 89%
5 10%

2



Allais would have picked β. Between the two alternatives

γ δ

payoff prob.ty payoff prob.ty
0 90% 0 89%
5 10% 1 11%

he would have picked γ. You can easily check (yes, do it!) that these two choices cannot
simultaneously be made by someone who is willing to use the expected utility criterion.

Economists and financial economics, untroubled by this, assume that all agents abide
by expected utility. This is partly for the theoretical reasons sketched above, but mostly
for convenience. To describe the choices of an expected utility maximizer, an economist
needs only to know the consequences, the probability distribution over consequences for
each alternative, how to compute the expected value and the utility function over the
consequences. When theorizing, we’ll do as economists do: we assume knowledge of conse-
quences, alternatives and utility functions and we compute the expected utility maximizing
choice.

For the moment, however, let us go back to your CEO waiting for your hard-earned
wisdom to enlighten her.

What is the “right” utility function? The utility function embeds the agent’s prefer-
ences under risk. In the example above, when the utility function was u(r) = r, the optimal
choice is Fund β which looks a lot like a risky stock fund. When the utility function was
u(r) =

√
r + 3, the optimal choice was Fund γ, not much different from a standard 12-

month Treasury bill. It is the utility function which makes you prefer one over another.
Picking the right utility function is a matter of describing how comfortable we feel about
taking (or leaving) risks. This is a tricky issue, but I’ll say more about it in Lecture 4.

Sometimes, we are lucky enough that we can make our choice without even knowing what
exactly is our utility function. Suppose that consequences are monetary payoffs and assume
(as it is reasonable) that the utility function is increasing. Are there pairs of alternatives α
and β such that α is (at least, weakly) preferred by all sorts of expected utility maximizers?

In mathematical terms, let F and G be the cumulative probability distributions respec-
tively for α and β. What is the sufficient condition such that∫

u(x) dF (x) ≥
∫
u(x) dG(x)

for all increasing utility functions u?
Def. 1.2 [Stochastic dominance] Given two random variables α and β with respective
cumulative probability distributions F and G, we say that α stochastically dominates β if
F (x) ≤ G(x) for all x.

Stochastic dominance of α over β means that F (x) = P (α ≤ x) ≤ P (β ≤ x) = G(x) for
all x. That is, α is less likely than β to be smaller than x. In this sense, α is less likely to
be small.

3



If you happen to compare alternatives such that one stochastically dominates the other
ones and you believe in expected utility, you can safely pick the dominating one without
even worrying to find out what your “right” utility function should be. This may not happen
often, but let us try not to overlook checking for this clearcut comparison.

Isn’t this “expected utility business” too artificial? Well, it might be. But we
are not asking you to use expected utility to take your decisions. Expected utility is what
economists use to model your behavior under risk. If you happen to use a different route
which fulfills the three criteria of consistency, continuity and independence, an economist
will be able to fit your past choices to an expected utility model and guess your future
choices perfectly.

We can put it down to a matter of decision procedures. Expected utility is one: it
is simple to apply but it requires to you to swallow the idea of a utility function. There
are other procedures which lead you to choices that are compatible with expected utility
maximization in a possibly more natural way.

Here is an example2 of an alternative procedure. Suppose that you are a fund manager
and that your compensation depends on a benchmark. Your alternatives are the different
investing strategies you may follow. Each strategy will lead to a payoff at the end of the
year which is to be compared against the benchmark. If you beat the benchmark, you’ll
get a fixed bonus; otherwise, you will not. The performance of the benchmark is a random
variable B. Using past returns, you estimate its cumulative probability distribution H.
Moreover, since you are only one of many fund managers, you assume that the performance
of the benchmark is independent of which investing strategy you follow.

Your best bet is to maximize the probability of getting the bonus. If your investing
strategy leads to a random performance α with c.d.f. F , the probability of getting the
bonus is simply

P (α ≥ B) =
∫
P (x ≥ B) dF (x) =

∫
H(x) dF (x).

While (naturally) trying to maximize your chances of getting your bonus, you will be be-
having as if (artificially) trying to maximize a utility function u(x) = H(x).

What is the “right” probability distribution for an alternative? Ah, that’s a
good question. You might have read it already but, thank God (or free will), nobody can
answer this. Each one of us is free to develop his own way to assess the probabilities. In
the example above, I mischievously assumed that you were willing to use the distribution
of past returns but this may sometimes be plainly wrong.

Economists have since long recognized the importance of this question. Their first-
cut answer is to isolate the problem by assuming that the probabilities have already been
estimated by someone else and are known to the agent. Whenever this assumption holds,
we speak of decision making under risk. Whenever we do not assume that probabilities are
already known, we enter the realm of decisions under uncertainty.

2 This is drawn from research developed in Bocconi and elsewhere. See Bordley and LiCalzi (2000) for
the most recent summary.
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1.3 Decisions under uncertainty

Here is a typical decision under uncertainty. Your investment horizon is one year. There
is a family of investment funds. You must invest all of your wealth in a single fund. The
return on each fund is not known with certainty and you do not think that the distribution
of past returns is a good proxy. However, there is a list of scenarios upon which the return
on your investment depends.

Let us model this situation. There is a set C of consequences, typified by the one-year
returns you will be able to attain. There is a list S of possible future scenarios. There is a
set A of alternatives (i.e., the funds) out of which you must choose one. Each alternative
α in A is a function which tells you which consequence c you will be able to attain under
scenario s: that is, α(s) = c. Assuming there are only three funds, your choice problem
may be summarized by the following table.

Fund α Fund β Fund γ
scenario return return return
s1 -1% -3% 2.5%
s2 +2% -3% 2.5%
s3 +2% -3% 2.5%
s4 +2% +10% 2.5%
s5 +5% +10% 2.5%

Def. 1.3 [Expected utility under uncertainty] Assess probabilities for each scenario. De-
fine a utility function over consequences. Compute the expected value of utility for each
alternative over the scenarios. Choose an alternative which maximizes the expected utility.

After you assess probabilities for each scenario, you fall back to the case of decision
under risk. For instance, assessing P (s1) = 20%, P (s2) = 30%, P (s3) = P (s4) = 5%, and
P (s5) = 40% gets you back to the case studied above. If your utility function were u(r) = r,
the optimal choice would again be β. However, staying with the same utility function, if
you’d happen to assess P (s1) = P (s2) = P (s4) = P (s5) = 5%, and P (s3) = 80%, the
optimal choice would be γ.

Under uncertainty, the analysis is more refined. What matters is not only your attitude
to risk (as embedded in your choice of u), but your beliefs as well (as embedded in your
probability assessment).

Expliciting scenarios may matter in a surprising way, as it was noted in Castagnoli
(1984). Suppose the consequences are given as payoffs in millions of Euro. Consider the
following decision problem under uncertainty.

Fund α Fund β
scenario payoff payoff
s1 0 4
s2 1 0
s3 2 1
s4 3 2
s5 4 3

5



Suppose that you assess probabilities P (s1) = 1/3, and P (s2) = P (s3) = P (s4) = P (s5) =
1/6. Then β would stochastically dominate α even though the probability that α beats β
is P (α ≥ β) = 2/3. Any expected utility maximizer (if using an increasing utility function)
would pick β over α. However, if you are interested only in choosing whichever alternative
pays more between the two, you should go for α.

References

[1] R. Bordley e M. Li Calzi (2000), “Decision analysis using targets instead of utility
functions”, Decisions in Economics and Finance 23, 2000, 53–74.

[2] E. Castagnoli (1984), “Some remarks on stochastic dominance”,Rivista di matematica
per le Scienze Economiche e Sociali 7, 15–28.
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2. Irreversible investments and flexibility

2.1 Introduction

Under no uncertainty, NPV is the common way to assess an investment. (In spite of contrary
advice from most academics, consultants and hence practitioners use the payback time and
the IRR as well.) If you have to decide whether to undertake an investment, do so only if
its NPV is positive. If you have to pick one among many possible investments, pick the one
with the greatest NPV.

When uncertainty enters the picture, the easy way out is to keep doing NPV calculations
using expected payoffs instead of the actual payffos, which are not known for sure. This
might work as a first rough cut, but it could easily led you astray. The aim of this lecture is
to alert you about what you could be missing. Most of the material is drawn from Chapter 2
in Dixit and Pyndick (1994).

2.2 Price uncertainty

Consider a firm that must decide whether to invest in a widget factory. The investment is
irreversible: the factory can only be used to produce widgets and, if the markets for widgets
should close down, the firm could not be scrapped down and sold to someone else. The firm
can be built at a cost of c = 1600 and will produce one widget per year forever, with zero
operating cost. The current price of a widget is p0 = 200, but next year this will rise to
p1 = 300 with probability q = 1/2 or drop to p1 = 100 with probability 1 − q = 1/2. After
this, the price will not change anymore. The risk over the future price of widgets is fully
diversifiable and therefore we use the risk-free rate of interest r = 10%.

Presented with this problem, a naive CFO would compute the expected price p = 200
from the next year on. Using the expected price, the NPV of the project is

NPV = −1600 +
∞∑

t=0

200
(1.1)t

≈ 600.

Since the NPV is positive, the project gets the green light and the firm invests right away.
A clever CFO would consider also the possibility of waiting one year. At the cost of

giving up a profit of 2000 in year t = 0, one gains the option to invest if the price rises and
to not invest otherwise. The NPV for this investment policy is

NPV =
1
2

[
−1600

1.1
+

∞∑
t=1

300
(1.1)t

]
≈ 773.

This is higher than 600, and therefore it is better to wait than to invest right away. The
value of the flexibility to postpone the investment is 773 − 600 = 173.
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Ex. 2.1 For a different way to assess the value of flexibility, check that the opportunity to
build a widget factory now and only now at a cost of c = 1600 yields the same NPV as the
opportunity of building a widget factory now or next year at a cost of (about) 1980.

Ex. 2.2 Suppose that there exists a futures market for widgets, with the futures price for
delivery one year from now equal to the expected future spot price of 200. Would this make
us anticipate the investment decision? The answer is no. To see why, check that you could
hedge away price risk by selling short futures for 11 widgets, ending up with a sure NPV
of 2200. Subtract a cost of 1600 for building the factory, and you are left exactly with an
NPV of 600 as before. The futures market allows the firm to get rid of the risk but does
not improve the NPV of investing now.

2.3 Real options

We can view the decision to invest now or next year as the analog of an american option.
An american option gives the right to buy a security any time before expiration and receive
a random payoff. Here, we have the right to make an investment expenditure now or next
year and receive a random NPV. Our investment option begins “in the money” (if it were
exercised today, it would yield a positive NPV), but waiting is better than exercising now.
This sort of situations, where the underlying security is a real investment, are known as
real options. The use of real options is getting increasingly popular in the assessment of
projects under uncertainty.

Let us compute the value of our investment opportunity using the real options approach.
Denote by F0 the value the option today, and by F1 the value next year. Then F1 is a random
variable, which can take value [ ∞∑

t=0

300
(1.1)t

]
− 1600 ≈ 1700

with probability 1/2 (if the widget price goes up to 300) and value 0 with probability 1/2
(if it goes down). We want to find out what is F0.

Using a standard trick in arbitrage theory, consider a portfolio in which one holds the
investment opportunity and sells short n widgets at a price of P0. The value of this portfolio
today is Π0 = F0−nP0 = F0−200n. The value of the portfolio next year is Π1 = F1−nP1.
Since P1 = 300 or 100, the possible values of Π1 are 1700− 300n or −100n. We can choose
n and make the portfolio risk-free by solving 1700 − 300n = −100n, which gives n = 8.5.
This number of widgets gives a sure value Π1 = −850 for the portfolio.

The return from holding this portfolio is the capital gain Π1 − Π0 minus the cost of
shorting the widgets; that is, Π1 −Π0 − 170 = −850− (F0 − 1700)− 170 = 680−F0. Since
this portfolio is risk-free, it must earn the risk-free rate of r = 10%; that is, 680 − F0 =
(0.1)Π0 = 0.1(F0 − 1700), which gives F0 = 773. This is of course the same value we have
already found.
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2.4 Assessing your real option

Once we view an investment opportunity as a real option, we can compute its dependence on
various parameters and get a better understanding. In particular, let us determine how the
value of the option — and the decision to invest — depend on the cost c of the investment,
on the initial price P0 of the widgets, on the magnitudes of the up and down movements in
price next period, and on the probability q that the price will rise next period.

a) Cost of the investment. Using the arbitrage argument, we find (please, do it) that
the short position on widgets needed to obtain a risk-free portfolio is n = 16.5 − 0.005c.
Hence, Π1 = F1 − nP1 = 0.5c− 1650 and Π0 = F0 − 3300 + c. Imposing a risk-free rate of
r = 10% yields

F0 = 1500 − 0.455c, (1)

which gives the value of the investment opportunity as a function of the cost c of the
investment.

We can use this relationship to find out for what values of c investing today is better
than investing next year. Investing today is better as long as the value V0 from investing is
greater than the direct cost c plus the opportunity cost F0. Since the NPV of the payoffs
from investing today is 2200, we should invest today if 2200 > c+F0. Substituting from (1),
we should invest as long as c < 1284.

In the terminology of financial options, for low values of c the option is “deep in the
money” and immediate exercise is preferable, because the cost of waiting (the sacrifice of
the immediate profit) outweighs the benefit of waiting (the ability to decide optimally after
observing whether the price has gone up or down).

b) Initial price. Fix again c = 1600 and let us now vary P0. Assume that with equal
probability the price P1 will be twice or half the current price P0 (and remain at this level
ever after). Suppose that we want to invest when the price goes up and we do not want
to invest if it goes down (we will consider other options momentarily). Set up the usual
portfolio and check (yes, do it) that its value is Π1 = 16.5P0 − 1600 − 1.5nP0 if the price
goes up and Π1 = −0.5nP0 is the price goes down. Equating these two values, we find that
n = 16.5− (1600/P0) is the number of widgets that we need to short to make the portfolio
risk-free, in which case Π1 = 800 − 8.25P0 whether the price goes up or down.

Recall that the short position requires a payment of 0.1nP0 = 1.65P0−160 and compute
the return on this portfolio. Imposing a risk-free rate of r = 10%, we have Π1−Π0−[1.65P0−
160] = 0.1Π0 which yields

F0 = 7.5P0 − 727. (2)

This value of the option to invest has been calculated assuming that we would only want
to invest if the price goes up next year. However, if P0 is low enough we might never want
to invest, and if P0 is high enough it might be better to invest now rather than waiting.

Let us find for which price we would never invest. From (2), we see that F0 = 0 when
P0 ≈ 97. Below this level, there is no way to recoup the cost of the investment even if the
price rises by 50% next year. Analogously, let us compute for which price we would always
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invest today. We should invest now if the NPV of current payoffs (i.e., 11P0) exceeds the
total cost 1600+F0 of investing now. The critical price P̂0 satisfies 11P̂0−1600 = F0 which,
after substituting from (2), gives P̂0 = 249. Summarizing, the investment rule is:

Price region Option value Investment rule
if P0 ≤ 97 then F0 = 0 and you never invest;
if 97 < P0 ≤ 249 then F0 = 7.5P0 − 727 and you invest next year if price goes up;
if P0 > 249 then F0 = 11P0 − 1600 and you invest today.

c) Probabilities. Fix an arbitrary P0 and let us vary q. In our standard portfolio, the
number of widgets needed to construct a risk-free position is n = 8.5 and is independent
of q (yes, check it). The expected price of widgets next year is E(P1) = q(1.5P0) + (1 −
q)(0.5P0) = (q+0.5P0); therefore the expected capital gain on widgets is [E(P1)−P0]/P0 =
q − 0.5. Since the long owner of a widget demands a riskless return of r = 10% but gets
already a capital gain of q− 0.5, she will ask a payment of [0.1− (q− 0.5)]P0 = (0.6− q)P0

per widget. Setting Π1 −Π0 − (0.6− q)nP0 = 0.1Π0 with n = 8.5 we find (for P0 > 97) that
the value of the option is

F0 = (15P0 − 1455)q. (3)

For P0 ≤ 97 we would never invest and F0 = 0.
What about the decision to invest? It is better to wait than to invest today as long as

F0 > V0 − c. Since V0 = P0 +
∑∞

1 [(q + 0.5)P0]/(1.1)t = (6 + 10q)P0, it is better to wait as
long as P0 < P̂0 = (1600 − 1455q)/(6 − 5q) — yes, check this. Note that P̂0 decreases as
q increases: a higher probability of a price increase makes the firm more willing to invest
today. Why?

d) Magnitudes. Fix q = 0.5 and let us change the magnitudes of variations in price
from 50% to 75%. This leaves E(P1) = P0 but increases the variance of P1. As usual, we
construct a risk-free portfolio by shorting n widgets. The two possible values for Π1 are
19.25P0 − 1600 − 1.75nP0 if the price goes up and −0.25nP0 if the price goes down — yes,
check this. Equating these two values and solving for n gives n = 12.83− (1067/P0), which
makes Π1 = 267 − 3.21P0 irrespective of P1. Imposing a risk-free rate of r = 10% (please
fill in the missing steps) yields

F0 = 8.75P0 − 727. (4)

At a price P0 = 200, this gives a value F0 = 1023 for the option to invest significantly higher
than the 773 we found earlier. Why does an increase in uncertainty increase the value of
this option?
Ex. 2.3 Show that the critical initial price sufficient to warrant investing now instead rather
than waiting is P̂0 ≈ 388, much larger than the 249 found before. Can you explain why?
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3. Optimal growth and repeated investments

3.1 Introduction

Standard portfolio theory treats investments as a single-period problem. You choose your
investment horizon, evaluate consequences and probabilities for each investment opportunity
and pick a portfolio which, for a given level of risk, maximizes the expected return over the
investment horizon. The basic lesson from this static approach is that volatility is “bad”
and diversification is “good”.

The implicit assumptions are that you know your investment horizon and that you plan
to make your investment choice once and for all. However, when we begin working over
multiperiod investment problems, some of the lessons of the static approach take a whole
new flavour. The aim of this lecture is to alert you about some of the subtleties involved.
Most of the material is drawn from Chapter 15 in Luenberger (1998).

3.2 An example

At each period, you are offered three investment opportunities. The following table reports
their payoffs to an investment of Euro 100. An identical but independently distributed
selection is offered each period, so that the payoffs to each investment are correlated within
each period, but not across time.

α β γ

scenario payoff payoff payoff prob.ty
s1 300 0 0 1/2
s2 0 200 0 1/3
s3 0 0 600 1/6

You start with Euro 100 and can invest part or all of your money repeatedly, reinvesting
your winnings at later periods. You are not allowed to go short, but you can apportion
your investment over different opportunities. What should you do?

Consider the static choice over a single period. There is an obvious trade-off between
pursuing the growth of the capital and avoiding the risk of losing it all. More precisely, for
an investment of 100, the first lottery has an expected value of 150 and a 50% probability
of losing the capital. The second lottery has an expected value of (about) 67 and a 66.6%
probability of losing the capital. The third lottery has an expected value of 100 and a 83.3%
probability of losing the capital. Comparing β against γ, Lottery β minimizes the risk of
being ruined while γ offers the highest expected return. However, note that α dominates β
and γ under both respects. If you want to maximize your expected gain, investing 100 in
α is the best choice.
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This intuition does not carry over to the case of a multiperiod investment. If you always
invest all the current capital in α, sooner or later this investment will yield 0 and therefore
you are guaranteed to lose all of your money. Instead of maximizing your return, repeatedly
betting the whole capital on α guarantees your ruin.

Let us consider instead the policy of reinvesting your capital each period in a fixed-
proportion portfolio (α1, α2, α3), with αi ≥ 0 for i = 1, 2, 3 and α1 + α2 + α3 ≤ 1. Each of
these portfolios leads to a series of (random) multiplicative factors that govern the growth
of capital.

For instance, suppose that you invest Euro 100 using the (1/2, 0, 0) portfolio. With
probability 50%, you obtain a favorable outcome and double your capital; with probability
50%, you obtain an unfavorable outcome and your capital is halved. Therefore, the multi-
plicative factors for one period are 2 and 1/2, each with probability 50%. Over a long series
of investments following this strategy, the initial capital will be multiplied by a multiple of
the form (

1
2

) (
1
2

)
(2)

(
1
2

)
(2) (2)

(
1
2

)
. . .

(
1
2

) (
1
2

)
(2)

with about an equal number of 2’s and (1/2)’s. The overall factor is likely to be about 1.
This means that over time the capital will tend to fluctuate up and down, but is unlikely
to grow appreciably.

Suppose now to invest using the (1/4, 0, 0) portfolio. In the case of a favorable outcome,
the capital grows by a multiplicative factor 3/2; in the case of an unfavorable outcome, the
multiplicative factor is 3/4. Since the two outcomes are equally likely, the average multi-
plicative factor over two periods is (3/2) (3/4) = 9/8. Therefore, the average multiplicative
factor over one period is

√
(9/8) ≈ 1.06066. With this strategy, your money will grow, on

average, by over 6% per period.
Ex. 3.4 Prove that this is the highest rate of growth that you can attain using a (k, 0, 0)
portfolio with k in [0, 1].

Ex. 3.5 Prove that a fixed-proportions strategy investing in a portfolio (α1, α2, α3) with
mini αi > 0 and maxi αi < 1 guarantees that ruin cannot occur in finite time.

3.3 The log-optimal growth strategy

The example is representative of a large class of investment situations where a given strategy
leads to a random growth process. For each period t = 1, 2, . . ., let Xt denote the capital
at period t. The capital evolves according to the equation

Xt = RtXt−1, (5)

where Rt is the random return on the capital. We assume that the random returns Rt are
independent and identically distributed.

In the general capital growth process, the capital at the end of n trials is

Xn = (RnRn−1 . . . R2R1)X0.
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After a bit of manipulation, this gives

log
(
Xn

X0

)1/n

=
1
n

n∑
t=1

logRt.

Let m = E(logR1). Since all Rt’s are independent and identically distributed, the law of
large numbers states that the right-hand side of this expression converges to m as n→ +∞
and therefore

log
(
Xn

X0

)1/n

→ m

as well. That is, for large values of t, Xt is asymptotic to X0e
mt. Roughly speaking, the

capital tends to grow exponentially at rate m.
It is easy to check (please, do it) that m+ logX0 = E(logX1). Thus, if we choose the

utility function U(x) = log x, the problem of maximizing the growth rate m is equivalent to
finding the strategy that maximizes the expected value of EU(X1) and applying this same
strategy in every trial. Using the logarithm as a utility function, we can treat the problem
as if it were a single-period problem and this single-step view guarantees the maximum
growth rate in the long-run.

3.4 Applications

a) The Kelly criterion. Suppose that you have the opportunity to invest in a prospect
that will either double your investment or return nothing. The probability of the favorable
outcome is p > 1/2. Suppose that you have an initial capital of X0 and that you can repeat
this investment many times. How much should you invest each time to maximize the rate
of growth of the capital?

Let α be the proportion of capital invested in each period. If the outcome is favorable, the
capital grows by a factor 1+α; if it is unfavorable, the factor is 1−α. In order to maximize
the growth rate of his capital, you just need to maximizem = p log(1+α)+(1−p) log(1−α)
to find the log-optimal value α∗ = 2p− 1.

This situation resembles the game of blackjack, where a player who mentally keeps
track of the cards played can adjust his strategy to ensure (on average) a 50.75% chance
of winning a hand. With p = .5057, α∗ = 1.5% and thus em ≈ 1.01125, which gives an
(expected) .00125% gain each round.

b) Volatility pumping. Suppose that there are only two assets available for investment.
One is a stock that in each period doubles or halves your capital with equal probability. The
other is a risk-free bond that just retains value — like putting money under the mattress.
Neither of these investments is very exciting. An investment left in the stock will have a
value that fluctuates a lot but has no overall growth rate. The bond clearly has no growth
rate. Nevertheless, by using these two investments in combination, growth can be achieved!
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Suppose that we invest α of our capital in the stock and (1− α) in the bond, with α in
[0, 1]. The expected growth of this strategy is

m =
1
2

log (1 + α) +
1
2

log
(

1 − 1
2
α

)
,

which is maximized at α∗ = 1/2. For this choice of α, em ≈ 1.0607 and the growth rate of
the portfolio is about 6% per period which significantly outperforms the palsy 0% average
growth of each of the two assets.

The gain is achieved by using the volatility of the stock in a pumping action. Remember
that the strategy says that no more (and no less) than 50% of the stock should go in the
stock in each period. When the stock goes up in certain period, some of its capital gains are
reinvested in the bond; when it goes down, additional capital is shifted from the bond to the
stock. Capital is pumped back and forth between the two assets in order to achieve growth
greater than either could provide alone. Note that this strategy follows automatically the
dictum “buy low and sell high” by the process of rebalancing the investment in each period.
Ex. 3.6 Suppose that the two assets are stocks that in each period double or halve the
capital with equal probability. Assume that each asset moves independently of the other.
Prove that the optimal portfolio has α∗ = 50% and that the growth rate per period is about
11.8%.

c) Optimal growth portfolio. Let us go back to the example of Section 3.2. Consider
all portfolio strategies (α1, α2, α3), with αi ≥ 0 for i = 1, 2, 3 and α1 + α2 + α3 ≤ 1. What
is the portfolio which achieves the maximum growth?

Under scenario s1, the return is R = 1 + 2α1 − α2 − α3. Under scenario s2, the return
is R = 1 − α1 + α2 − α3. Under scenario s3, the return is R = 1 − α1 − α2 + 5α3. To find
an optimal portfolio, it suffices to maximize

m =
1
2

log (1 + 2α1 − α2 − α3) +
1
3

log (1 − α1 + α2 − α3) +
1
2

log (1 − α1 − α2 + 5α3) .

Ex. 3.7 Show that (1/2, 1/3, 1/6) is an optimal portfolio. Prove that it is not unique, by
checking that (5/18, 0, 1/18) is also optimal.

Any optimal portfolio has a growth rate of about 6.99%, higher than what was found
above.

d) Continuous lotteries. There is one stock that can be purchased at a price of Euro 100
per share. Its anticipated price in one year is uniformly distributed over the interval [30, 200].
What is the log-optimal strategy over this period?

The log-optimal strategy is found by maximizing

m =
∫ 2

.3
[log(1 − α+ αr)]

(
10
17

)
dr.

We find that the log-optimal investment in the stock is α∗ ≈ .63, which gives a growth rate
of about 4.82% per period.
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3.5 Excursions

An extensive list of several properties of the log-optimal strategy is given in MacLean et
alii (1992). This paper and Li (1998) discuss the trade-offs between growth and security in
multiperiod investment analysis.
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4. Risk aversion and mean-variance preferences

4.1 Risk attitude

Consider a choice problem among the following three lotteries, whose expected values are
written by their name.

α (480) β (525) γ (500)
payoff prob.ty return prob.ty return prob.ty
480 100% 850 50% 1000 50%

200 50% 0 50%

If we were to base our choices on the expected value, β would be our preferred choice.
However, there are people who would rather pick α (which on average pays less) on the
ground that is less “risky” or maybe γ on the ground that it is an even riskier choice.

What can we say about the elusive notion of “risk”? While it is hard to define what
exactly “risk” means, certainly a sure outcome like α should be deemed riskless. (And
avoiding risk justifies its choice in the example above.) By contrast, let us call risky any
lottery which does not yield a sure outcome. Although this is a poor distinction, it recognizes
that risk lies in the unpredictability of the resulting outcomes.

However, avoiding risk cannot be the only reason driving a choice. If we use the expected
value of a lottery as a benchmark to measure its “return”, we should argue that β is a more
“profitable” choice (on average). An agent who chooses α is avoiding risk at the cost of
accepting a lower “return”. On the contrary, an agent who always pick the lottery with the
highest expected value is not affected by risk considerations.
Def. 4.4 An agent is risk neutral if he evaluates lotteries by their expected value.

If an agent is not risk neutral, he may be repelled by or attracted to risk: think of
people buying insurance or respectively playing lotto. How do we tell which case is which?
There is a simple question we may ask the agent: suppose you possess lottery β; how much
sure money would you ask for selling it? We name this “price” c(β) called by the agent the
certainty equivalent of a lottery.

If the agent does not care about risk, he should be willing to exchange β for a sum
equivalent to its expected value. That is, we should have c(β) = E(β). We can deviate
from equality in two directions. If c(β) < E(β), the agent values β less than his expected
value: therefore, the risk in β reduces the value to him of holding it — we say that he is
risk averse. Vice versa, if c(β) > E(β), he is risk seeking.

For a different way to say exactly the same thing, define the risk premium r(β) of a
lottery β as the difference between its expected value and its certainty equivalent. A risk
averse agent is willing to forfeit the risk premium r(β) in order to replace the “risky” lottery
β by the sure outcome c(β) < E(β). That is, he is willing to accept for sure a payment
which is less than the average payoff of β in order to get rid of the risk associated with β.
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4.2 Risk attitude and expected utility

All of this holds in general, even if the agent is not an expected utility maximizer. However,
in the special case of expected utility maximizers, there exists a simple criterion to recognize
whether an agent is risk averse, neutral or seeking.
Thm. 4.5 An expected utility maximizer is risk neutral (resp., averse or seeking) if his
utility function is linear (resp., concave or convex).

Thus, while the increasing monotonicity of the utility function speaks about the greed-
iness of the agent, its curvature tells us something about his attitude to risk.
Ex. 4.8 Check that expected utility can rationalize any of the three choices in the example
above using different utility functions. If an expected utility maximizer has a utility function
u1(x) = x he prefers β; if it is u2(x) =

√
x he prefers α; and if it is u3(x) = x2 he prefers γ.

This is evidence of the flexibility of the expected utility model.

Here is a simple application. There are two assets. One is a riskless bond that just
retains its value and pays 1 per euro invested. The other is a risky stock that has a random
return of R per euro invested; we assume that E(R) > 1 so that on average the stock is
more profitable than the riskless bond. Suppose that an agent is risk-averse and maximizes
the expected value of a (concave and strictly increasing) utility function u over returns. The
agent must select a portfolio and invest a fraction α of his wealth in the risky asset and a
fraction 1 − α in the riskless bond. Short-selling is not allowed and thus α is in [0, 1].

The maximization problem is maxαEu(αR + 1 − α). Risk aversion implies that the
objective function is concave in α (can you prove it?). Therefore, the optimal portfolio
satisfies the first-order Kuhn-Tucker condition:

E
[
(R− 1)u′(αR+ 1 − α)

]


= 0 if 0 < α < 1
≤ 0 if α = 0
≥ 0 if α = 1

.

Since E(R) > 1, the first-order condition is never satisfied for α = 0. Therefore, we conclude
that the optimal portfolio has α∗ > 0. That is, if a risk is actuarially favorable, then a risk
averter will always accept at least a small amount of it.

4.3 Mean-variance preferences

There exist alternative approaches to the formalization of risk. One that is very common
relies on the use of indices of location and dispersion, like mean and standard deviation.
The expected value is taken as a measure of the (average) payoff of a lottery. Risk, in-
stead, is present if the standard deviation (or some other measure of dispersion) is positive.
The preferences of the agent are represented by a functional V (µ, σ), where µ and σ are
respectively the expected value and the standard deviation of the lottery.

If offered several lotteries with the same standard deviation, a (greedy) agent prefers
the one with the highest expected value. If offered several lotteries with the same expected
value, a risk averse agent prefers the one with the lowest variance. Thus, a greedy and risk
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averse agent has preferences represented by a functional V (µ, σ) which is increasing in µ
and decreasing in σ.

While intuitively appealing, this approach postulates that the agent dislikes any kind
of positive standard deviation. It turns out that this is not consistent with the definition
of risk aversion given above. Therefore, the so-called “mean-variance” preferences are in
general incompatible both with the standard definition of risk aversion and in particular
with the expected utility model.
Ex. 4.9 Suppose that a risk averse agent is an expected utility maximizer with utility
function u(x) = x for x ≤ 1 and u(x) = 1 + 0.1(x − 1) for x > 1. Compare a lottery α
offering a payoff of 1 with probability 1 versus another lottery β offering a payoff of 1.1 with
probability 10/11 and 0 with probability 1/11. While µ(α) = µ(β) and σ(α) = 0 < σ(β),
the agent strictly prefers β to α.

If one wishes to relate this approach with the expected utility model, the best she can
do is to view it as a crude approximation. Given an arbitrary value x∗, consider the Taylor
expansion of u around x∗:

u(x) = u(x∗) +
(x− x∗)

1!
u′(x∗) +

(x− x∗)2
2!

u′′(x∗) +
(x− x∗)3

3!
u′′′(x∗) + . . . (6)

The “mean-variance” approach ignores the third and all successive terms in the Taylor
expansion of the utility function. Or, in more statistical terms, it looks only at the first two
moments of the probability distribution of the lotteries.

Consider the two lotteries

α β

payoff prob.ty return prob.ty
-1 0.999 1 0.999

999 0.001 -999 0.001

Since they have the same mean and the same standard deviation, the second-order ap-
proximation cannot tell them apart. However, most people is not indifferent between the
two.

If we want to distinguish α from β, we need to reach the third term in (6), which
represents skewness. Skewness is zero for a symmetric distribution; it is positive if there
is a hump on the left and a long thin tail on the right; and negative in the opposite
case. So α is positively skewed and β is negatively skewed. Most commercial lotteries and
games of chance are positively skewed: if people like them because of this, the second-order
approximation cannot capture their preferences.

Even if crude, the second-order approximation may be justified by two different kinds
of assumptions: either (i) the utility function has a special form (namely, it is quadratic
and therefore the approximation is correct); or, (ii) the probability distributions belong to a
particular family which is completely characterized by the first two moments (for instance,
they are normal).
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4.4 Risk attitude and wealth

The risk attitude is especially studied with reference to choices involving the wealth of
an agent. To keep things simple, assume in the following that all risky decisions concern
monetary payoffs and that agents maximize expected utility. The utility functions are
defined over the positive reals and, whenever necessary, they are twice differentiable with a
strictly positive first derivative.

We consider one way in which wealth affects the risk attitude. Suppose that an agent
with current wealth w must choose between a risky lottery α and a sure outcome b. If he
chooses α, his future wealth will be w + α; if he chooses b, w + b. Suppose that at the
current level of wealth the agent prefers the risky α to the sure b. If he is an expected
utility maximizer, this implies that Eu(w + α) > u(w + b).
Def. 4.6 An agent has decreasing risk aversion (with respect to wealth) whenever, for
arbitrarily given α and b, Eu(w+ α) > u(w+ b) implies Eu(w′ + α) > u(w′ + b) if w′ > w.

Similar definitions holds for constant and increasing risk aversion. There exists a simple
criterion to recognize whether an agent has decreasing, constant or increasing risk aversion.
Thm. 4.7 An agent has decreasing risk aversion (resp., constant or increasing) if and only
if his coefficient of (absolute) risk aversion

λ(x) = −u
′′(x)
u′(x)

is decreasing (resp., constant or increasing) in x.

The standard assumption in economic theory is that agents are risk averse and have
decreasing risk aversion. However, in applications it is very common to postulate that they
are risk neutral or that they have constant risk aversion because this greatly simplifies the
choice of their utility function.
Thm. 4.8 The only utility functions with constant absolute risk aversion are the linear
utility function u(x) = x which has λ(x) = 0, and the exponential utility function u(x) =
−sgn(k)e−kx which has λ(x) = k.

Ex. 4.10 Suppose that the agent is an expected utility maximizer with a constant coefficient
of absolute risk aversion k > 0. The choice set contains only lotteries normally distributed.
Given a lottery X ∼ N(µ, σ), check that the preferences of the agent can be represented by
the functional V (µ, σ) = µ− (1/2)kσ2.

4.5 Risk bearing over contingent outcomes

Suppose that there is a finite number of states of the worlds (or scenarios). Each state si
(i = 1, 2, . . . , n) occurs with probability πi. There exists a single commodity, which has a
price pi in state si. The agent is endowed with the same initial income y in each scenario
and he derives a differentiable utility u(ci) from consuming a quantity ci of the commodity
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in the scenario si. When the agent is an expected utility maximizer, he chooses his state
contingent consumption by solving

max
∑

i

πiu(ci) s.t.
∑

i

pici = y.

Assuming an interior solution, the first-order condition requires [πiu
′(ci)] /pi to be constant

for all i. This result states that the risk-bearing optimum has the same expected marginal
utility per dollar of income in each and every state and is known as the fundamental theorem
of risk-bearing.
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5. Information structures and no-trade theorems

5.1 Introduction

One traditional view about trading in financial markets is that this has two components:
liquidity and speculation. Some people trade because they need the liquidity (or have other
pressing demands from the real economy); others trade because they have asymmetric
information and hope to profit from it. According to this view, high volume trading should
be explained mostly by differences in information among traders. See for instance Ross
(1989):

“It is difficult to imagine that the volume of trade in security markets has very
much to do with the modest amount of trading required to accomplish the
continual and gradual portfolio balancing inherent in our current intertemporal
models. It seems clear that the only way to explain the volume of trade is with a
model that is at one and at the same time appealingly rational and yet permits
divergent and changing opinions in a fashion that is other than ad hoc.”

This lecture illustrates a few theoretical results showing that in fact asymmetry in
information alone is not sufficient to stimulate additional trade. In fact, there are even
cases where it might reduce the trading volume and lead to market breakdowns. This
family of results are known as “no-trade” or “no-speculation” theorems.

5.2 The Dutch book

The common wisdom about trading motivated by asymmetric information is that people
with different beliefs can concoct mutually beneficial trades. In fact, even more is true:
when two or more risk-neutral agents have different beliefs about the probability of some
events and are willing to bet among them on these events, a bookie can arrange a set of
bets that each of the agents is willing to take and still guarantee himself a strictly positive
expected profit. This phenomenon is known as a Dutch book.

Here is a simple illustration. There are two agents: Ann and Bob. Suppose that Ann
believes that in a month the Mib30 will be up with probability p while Bob believes that
this will happen with probability q < p. Neither one can be absolutely certain about the
direction of the market, so we assume q �= 0 and p �= 1.

The bookie can make a sure profit by offering to each player a specific bet customized for
his beliefs. The following table gives the bets’ payoffs for each of the two possible events:
the index goes up or down. Given any x > 0, the bookie can cash a sure (and strictly
positive) profit of x− ε, where 0 < ε < x is the “sweteener” that induces agents to take the
bets. While reading the table, recall that the bookie’s payoffs are the opposite of the sum
of agents’ payoffs.
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Bull Bear

Ann’s bet x
1 − p
p− q + ε −x p

p− q

Bob’s bet −x1 − q
p− q x

q

p− q + ε

bookie’s bet x− ε x− ε

Ann’s uses her own beliefs to assess her bet. She estimates that the bet has an expected
value of

p

[
x

1 − p
p− q + ε

]
+ (1 − p)

[
−x p

p− q

]
= pε > 0

and therefore is willing to take it. Bob, using his own beliefs, reaches a similar conclusion.
The bookie, regardless of his own beliefs, makes money in each and every state. Everybody
is happy (a priori) but the bookie is setting up an arbitrage to his advantage. Hence, he
must be exploiting somehow at least one of the two agents. Who is being exploited?

Well, if two agents hold different beliefs about the probability of an event, at least one
of the two must be “wrong”. The bookie, even though he himself may have no idea who
is wrong, is simply exploiting this fact. Differing beliefs imply that there is an arbitrage
opportunity lurking somewhere, and agents who recognize this fact will forfeit trading and
revise their beliefs for fear of being exploited. This is the basic intuition behind the no-
trade theorems. It also motivates the wide-spread buzzword that there is only one “market
probability” to which agents’ beliefs should conform to; otherwise, so goes the argument,
they could be exploited.
Ex. 5.11 There are three risk-neutral agents: Ann, Bob and Carol. Consider three events:
in a month the Mib30 will go down of more than 5%, or it will be up of more than 5%, or
it will move less than 5%. Call these three events respectively E1, E2 and E3. Ann believes
that Ei occurs with probability pi, for i = 1, 2, 3. Similarly, denote Bob’ beliefs with q and
Carol’s beliefs with r. Assume 0 < p3 = q1 = r2 < p2 = q3 = r1 < p1 = q2 = r3 < 1. Find a
Dutch book. (Warning: solving this is longer than usual.)

5.3 The red hats puzzle

We should turn the intuition above into a formal argument. The first step is to appreciate
that there exist different levels of knowledge of a fact. We illustrate this with a puzzle. An
evil King decides to grant an amnesty to a group of prisoners who are kept incommunicado
in the royal dungeons. Summoning the prisoners to his presence and commanding them
under penalty of death not to look upward, the King has a hat placed upon the head of
each one. Two hats are red; the rest are white. Each prisoner can see the hat of his fellow
mates, but not his own.
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The King speaks to all summoned prisoners: “Most of you wear white hats. At least
one of you is wearing a red had. Every day, at dawn, you will be summoned here and any
of you can attempt to guess the colour of your own hat. If you guess correctly, you will go
free; if you guess incorrectly, you will be instantly beheaded.”

How many days would it take the two red-hatted prisoners to infer the colour of their
hats? On the first day, each prisoner with a white hat sees two red hats and each prisoner
with a read hat sees only one. Since they all know what the King has told them, none can
conclude anything on the colour of his own hat. Thus, none will dare to guess.

On the second day, the white-hatted prisoners still see two red hats and the two red-
hatted prisoners still see one red hat. Now, the two red-hatted prisoners (named Ann and
Bob) learn a new piece of information. One day is passed and neither Ann nor Bob have
spoken and left. Because they were both present at the King’s speech, Ann knows that
Bob knows that there is at least one red hat. If he had not already left, it is because he
must have seen a red hat. For if he had not, Bob would have seen only white hats and
thus would have correctly inferred that the only possible red hat was perched atop his own
head. “Hence, — Ann reasons, — since the only red hat I can see is on Bob’s head, that
which Bob must have seen on the first day must have been on mine.” Bob, having the same
information set and abilities as Ann, will arrive at the same conclusion. Both will infer
their hats to be red on the second day, and will go free.

This puzzle establishes that there are different levels of knowledge of a specific fact.
Consider the proposition “everyone sees a red hat”. On the first day, Ann sees Bob’s red
hat (and vice versa) but does not know whether Bob also sees one (and vice versa). Thus
on the first day the proposition is actually true but not everyone knows that it is true. It
takes another day to make the proposition “everyone knows that everybody sees a red hat”
become true.

The highest-level proposition is “everybody knows that everybody knows that everybody
knowns . . . that [everyone sees a red hat]”. Independently of which event you put within
brackets, this is an instance of what is called “common knowledge” of an event. Not only
everybody knows the event, but he knows also that others know it, and so on.

The puzzle shows that sometimes the difference between staying in prison and going
free rests with understanding the difference. Similarly, sometimes making profits in a fi-
nancial market rests on the capacity to understand the difference between the proposition
“Autostrade trades at a price of 7” and “everybody knows that Autostrade trades at a
price of 7”. Since trading markets are public, both propositions are true; but the second
proposition conveys more information than the first one.
Ex. 5.12 Convince yourself that, if the red hats had been three, the proposition “everyone
knows that everybody sees two red hats” becomes true on the third day.

Ex. 5.13 Prove that, if the red hats had been k, then k prisoners would have gone free on
the k-th day.
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5.4 Different degrees of knowledge

There is a set Ω of states. Each agent has an information map P that associates with each
state ω in Ω a nonempty subset P (ω) of Ω. When the true state is ω, the agent thinks that
all (and only all) the states in P (ω) may be true; in other words, the agent knows only that
the true state belongs to the set P (ω). An event E is a subset of Ω. An agent for whom
P (ω) ⊆ E knows, in state ω, that some state in the event E has occurred or, more simply,
he knows that E must be true.

Let us consider an example. There are two risk-neutral agents, Ann and Bob. Momen-
tarily, we are going to consider the following bet, based on the value of θ: if θ = 0, Bob
must pay Ann Euro 1; if θ = 1, Ann must pay Bob Euro 1. In case of indifference, assume
that either agent prefers to turn down the bet. Hence, Ann bets only if she thinks that the
probability of θ = 0 is strictly greater than 1/2 and Bob bets only if she thinks that it is
strictly lower than 1/2. Trade is possible only if agents have different beliefs.

There are five states ω1, . . . , ω5 and the pairs (θ, ω) are drawn from the following prior
joint distribution, which is known to both agents:

θ = 0 θ = 1
ω1 0.20 0.05
ω2 0.05 0.15
ω3 0.05 0.05
ω4 0.15 0.05
ω5 0.05 0.20

Ann and Bob have access to different information, which is represented by their infor-
mation maps. We assume that the information maps are partitional ; that is: (i) ω∈P (ω);
and (ii) ω′ ∈P (ω) implies P (ω′) = P (ω). A partitional information map may be specified
by the information partition it induces.
Ex. 5.14 Convince yourself that (i) makes sure that the agent is never certain that the
state is different from the true state. Show that, if (ii) were false, in state ω the agent could
infer that the state is not ω′: therefore, ω′ could not belong to P (ω).

Continuing the example, Ann’s information partition is PA = ({ω1, ω2}, {ω3, ω4}, {ω5}).
Bob’s information partition is PB = ({ω1}, {ω2, ω3}, {ω4, ω5}). Since the two information
maps are different, there may be states where agents entertain different posterior beliefs
and are thus both willing to undertake the bet.

For instance, consider state ω2. By her map, Ann knows only that either ω1 or ω2 are
true. Using Bayes’ rule, she attributes probability 5/9 to θ = 0. By a similar reasoning,
Bob knows only that either ω2 or ω3 are true and he attributes probability 1/3 to θ = 0.
Therefore, in state ω2, agents have different beliefs and are willing to subscribe the bet.
Trade can take place. Consider now state ω5. Now, Ann attributes probability 1/5 to θ = 0
and is not willing to bet. In this state, no trade can take place.
Ex. 5.15 Compute agents’ posterior probabilities in all states.

Using the results of Exercise 5.15, it is easy to show that players’ disposition to bet in
each state is the following.
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State ω1 ω2 ω3 ω4 ω5

Ann Bet Bet Bet Bet No bet
Bob No bet Bet Bet Bet Bet

It seems that trade should occur in states ω2, ω3 and ω4. But this would be true only if
Ann and Bob are naive and have not digested the meaning of the red hats puzzle. To see
why, consider again state ω2.

As before, Ann initially knows only that either ω1 or ω2 are true. However, by computing
the table above, she knows only that Bob is not willing to bet in state ω1. Therefore, if she
hears Bob proposing to take his part of the bet, she knows that the state cannot be ω1. But
then it must be exactly ω2, in which case the probability that θ = 0 is 1/4 and therefore
Ann should not accept the bet. The mere fact that Bob is willing to trade suffices to alert
Ann to something that make her revise her beliefs and lead her to refuse the bet.
Ex. 5.16 By a similar argument, prove that no trade can occur in state ω4. Having es-
tablished that no trade should occur in states {ω1, ω2, ω4, ω5}, apply another round of
rationality and prove that no trade occurs in state ω3 either.

Trade is impossible when everybody behaves rationally, even if Ann and Bob have
different information maps! The public information revealed by their willingness of trade
realigns their probabilities and make them give up trade.

More intuitively, here is the gist of the argument. If I know you are so smart, why
should I buy a piece of risky stock from you? If you are willing to sell it at a price p, you
must think that its value is less than p. Since you are no fool, I better take this into account
and revise my estimate of the stock downwards. As far as you are willing to sell, you must
know something that I do not know: then I better be careful and avoid being a sucker, so
I won’t buy.

5.5 Can we agree to disagree?

In the example above, only two rounds of deductive thinking are needed to reach the
conclusion that no trade is preferable. Similar techniques can be used to obtain similar
results after one formally introduces the notion of common knowledge.

Restricting for simplicity to the case of two individuals, here is how to formalize it. Let
PA and PB the information maps of Ann and Bob. An event F is self-evident if for all ω
in F we have Pi(ω) ⊆ F for i = A,B. An event E is common knowledge in state ω if there
exists a self-evident event F for which ω∈F ⊆ E.
Ex. 5.17 Let Ω = {ω1, ω2, ω3, ω4, ω5, ω6}. Suppose that the information partitions induced
by PA and PB are respectively

PA = {{ω1, ω2}, {ω3, ω4, ω5}, {ω6}} ,
PB = {{ω1}, {ω2, ω3, ω4}, {ω5}, {ω6}} .

Prove that in any state the event E = {ω1, ω2, ω3, ω4} is not common knowledge. Prove
that the event E = {ω1, ω2, ω3, ω4, ω5} is common knowledge in any state but ω6.

Ok, enough with abstract theory. People do not actually talk about information maps
and states. But traders use probabilities. So let us relate these notions. Suppose that an
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agent has a prior probability distribution p(·) on Ω: for instance, he attaches probability
p(E) to an event E. Given his information map, in state ω the agent will know that only
the states in P (ω) can occur and therefore will update his probability distribution to a
posterior p(·|P (ω)). If E∩P (ω) �= ∅, it will be assigned a probability p(E|P (ω)); otherwise,
it will be deemed impossible.

Thus information maps and states can be used to describe how people update their
beliefs in the wake of new information. It turns out that a common prior and common
knowledge of the posteriors force people to have the same posterior probabilities for that
event.
Thm. 5.9 Suppose that Ω is finite and that Ann and Bob share the same prior. If the
information maps are partitional and in state ω∗ it is common knowledge that each agent
i = 1, 2 assigns probability πi to some event E, then π1 = π2.

Proof: The assumptions imply that there is a self-evident event F containing ω∗ which
is a subset of {ω : p(E|Pi(ω)) = πi} for i = 1, 2. The event F must be a union of
members of i’s information partition. Since Ω is finite, so is the number of sets in each
union; thus let F = ∪kAk = ∪kBk. Given two nonempty disjoint sets C and D with
p(E|C) = p(E|D) = πi, we have p(E|C ∪D) = π. Since for each Ak we have p(E|Ak) = π1,
it follows that p(E|F ) = π1; similarly for p(E|F ) = π2. Hence π1 = π2. ✷

Following the same logic, one can show that if two agents with partitional information
maps have the same prior it can be common knowledge that they assign different probabili-
ties to some event. However, it cannot be common knowledge that the probability assigned
by Ann exceed that assigned by Bob. This makes it impossible to stipulate some purely
speculative bets.

For instance, suppose that Ann and Bob are strictly risk averse. If Ann accepts an
even-odds bet that a coin will come up heads, she reveals that she is assigning “heads”
a probability greater than 1/2. If Bob accepts to bet on “tails”, he reveals that he is
assigning “heads” a probability lower than 1/2. The theorem says that it cannot be common
knowledge that Ann’ posterior probability for heads is different from Bob’s posterior.

Let us work out a second example where common knowledge is needed to reach the
no-trade outcome. Ann and Bob are considering to set up the same bet as before. However,
this time there is a countable number of states ω0, ω1, ω2, . . . and the information partitions
are

PA =
(
{ω0}, {ω1, ω2}, {ω3, ω4}, {ω5, ω6}, {ω7, ω8}, . . .

)
and

PB =
(
{ω0}, {ω1}, {ω2, ω3}, {ω4, ω5}, {ω6, ω7}, . . .

)
.

Note that in any state each player (at worst) is unsure which of two states hold. Therefore,
ruling out one of the two candidates enables an agent to correctly infer the true state.

For some ε in (0, 1/32), the prior joint distribution on (θ, ω) is the following.
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θ = 0 θ = 1
ω0 1/4 (1/4) + (2/3)ε

ω1 1/8 (1/8) − ε
ω2 1/16 (1/16) + (1/2)ε

ω3 1/32 (1/32) − (1/4)ε

ω4 1/64 (1/64) + (1/8)ε
...

...
...

ωn
1

2n+2

1
2n+2

+ (−1)n 1
2n−1

ε

...
...

...

Ex. 5.18 Verify that

+∞∑
n=0

1
2n+2

=
1
2

and
+∞∑
n=1

(−1)n 1
2n−1

= −2
3

and check that this is a well-defined probability distribution.

In state ω0, even a naive Ann does not want to trade; similarly, in state ω1, even a naive
Bob does not want to trade. In state ω2, Ann needs a second round of deductive thinking
to know that the state is not ω1 (therefore it must be ω2) and hence to decline trade. The
argument is identical to the previous example: the crucial step is that Ann can deduce that
Bob know that the state is not ω1. For short, Ann knows that Bob knows that the state is
not ω1.

Going further, in state ω3 Bob needs a third round of deductive thinking to conclude
that the state is not ω2 (therefore it must be ω3) and to decline trade. The crucial step is
that Bob must be able to deduce that Ann knows that the state is not ω2. To do so, he
needs to replicate the reasoning above and therefore he needs to know that in state ω2 Ann
knows that Bob knows that the state is not ω1.

Continuing like this, it turns out that it takes n rounds for Ann (if n is even) or Bob (if
n is odd) to deduce that the state is unfavorable and hence decline to trade. For no trade
to occur in state n, the agents must undertake a chain of n deductions. Since the number
of states is infinite, for no trade to occur in any state, they must run an infinite chain of
deductions. This infinite chain requires the assumption of common knowledge.

5.6 No trade under heterogenous priors

The no-speculation results are fairly robust. Here is an example with heterogenous priors.
Since priors are different, common knowledge is not an impediment to trade. However, this
time trade fails because of information asimmetry.

Ann and Bob are risk-neutral agents who are considering a bet which depends on whether
the interest rate will go up or down tomorrow. Ann gets a binary signal which she can reveal
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to Bob. They have different priors, so either player interprets the signal differently. When
Ann gets signal u, she assigns probability pu1 to a rise in the interest rate; when she gets
signal d, she assigns probability pd1 to a decrease in the interest rate. If Bob is revealed
signal u (respectively, d), he assigns probability pu2 (respectively, pd2) to the corresponding
event.

Gains from trade are possible if pu1 �= pu2 or pd1 �= pd2. For example, suppose pu1 = 2/3,
pd1 = 1/3, pu2 = 3/4 and pd2 = 1/4. Then Ann could agree to reveal the signal to Bob
with the understanding that she would pay her 2 if the signal is correct and be paid 5
from him if it is incorrect. For either possible signal, Ann expects an average gain of
(2/3)(−2) + (1/3)(+5) = 1/3.

On the other hand, if Ann reveals him her signal, Bob can expect for either signal
an average gain of (3/4)(+2) + (1/4)(−5) = 1/4 if the signal is truthful and (3/4)(−5) +
(1/4)(+2) = −13/4 if it is not. Since Bob can secure 0 by not trading, he is willing to buy
Ann’s signal only if she reports truthfully.

Unfortunately, Ann can gain more by misreporting his signal. If she lies and always
report the wrong signal, she has an expected gain of (2/3)(+5)+ (1/3)(−2) = 8/3, which is
greater than her gain from reporting truthfully. Even if Ann prefers being truthful and sell
her signal to no trade, once the deal is signed she gains more by lying. Knowing this, Bob
cannot trust Ann and does not buy her signal. So trade breaks down due to informational
asimmetry: if Bob could monitor the truthfulness of Ann’s report, trade would resume.
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6. Herding and informational cascades

6.1 Introduction

Consider a situation where 100 people have to choose one of two movies shown at the same
theater. The prior probability for A (respectively, B) being better is 51% (respectively,
49%). People arrive at the movie theater in sequence, observe the choices made by the
people arrived before them, and decide for one or the other of the movies. Each agent knows
the prior probability and, before going to the theater, receives a private (independent) signal
about which movie is better. All signals are of the same quality.

Suppose that 99 people receive a signal favoring B and only one a signal favoring A. It
is obvious that, if the agents could aggregate their information, everybody would choose
B. Consider what could happen when aggregation of information is not possible because
people arrive in sequence and do not talk to each other.

In particular, suppose that the only person who got an A-signal arrives first. Clearly,
Primus will go to A. Secunda will now know that Primus got an A-signal, while she had a
B-signal. Since the two signals are of equal quality, they cancel out, and the rational choice
is to go by the prior probabilities and pick A. Note that if Secunda had got an A-signal,
she would also have chosen A.

Therefore, Secunda chooses A regardless of her signal. But then her choice provides no
information to the third agent in line. Facing exactly the same choice as Secunda, he will
also choose A and so on. Everybody ends up watching movie A even though the aggregate
information strongly suggests that B is better. (Food for thought: have you ever wondered
why producers heavily advertise a movie only in its opening days?)

A group dynamics where most people coordinate on the same choice is called “herding”.
We may view some buying or selling frenzies as instances of herding behavior. This lecture
illustrates what may rationally start and maintain this kind of imitative behavior, as well
as which consequences herding may have on the valuation of financial assets.

6.2 Some terminology

Herding behavior is associated with people blindly following others’ choices. The most likely
cause is probably human stupidity (something never too rare). For our purposes, however,
we are interested in situations where herding is the outcome of a rational choice.

Imitation can be rational if the predecessors’ actions affects either the successors’ payoffs
or their beliefs (or both). In the first case, we say that there is a payoff externality ; for
example, think of the your last decision to upgrade to the ump-th version of Word (packed
with many new frills absolutely worthless to you) only because the old version cannot read
files prepared with the new version. In the second case, we say that there is an information
externality as in the movies’ example above.
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In many cases, both types of externalities are present and they may oppose or reinforce
each other. In the movies’ example, for instance, I could have added the assumption that
people dislike crowded shows. Then the information externality pushing for A-herding would
have been opposed by a payoff externality driving later customers to choose the (seemingly
slightly worse but) less crowded movie show.

Sequencing can be exogenous, and then the order of moves is given, or endogenous, in
which case agents are allowed to decide when to move and whether to move first or to herd.
The state space can be discrete or continuous, as well as the choice set. The movies examples
had a discrete state space (A is better or B is better), a discrete choice set (watching A or
B) and exogenous sequencing.

6.3 Public offerings and informational cascades

Consider a situation in which a seller is making an IPO through an underwriter. Suppose
that market participants hold perfectly accurate information when aggregated and that
the offer price must be uniform. Then we should expect overpriced offerings to fail and
underpriced offerings to succeed.

However, if distribution channels are limited, the underwriter needs time to approach
interested investors. If later investors can observe how well the offering has sold to date,
herding based on information externalities is possible and the conclusion above may be
upset.

Suppose that the issuer and the n investors are risk-neutral. Each share of the firm has
a value θ, which is uniformly distributed in [0, 1]. Neither the issuer nor the investors know
θ. The issuer is willing to accept any price p ≥ 0 but wants to maximize revenue from the
IPO. The issue has sufficient shares to offer one to each investor; each investor can only
afford one share. Therefore, the investor’s decision is simply whether to buy or abstain.

Each investor receives an independent binary signal, which is H igh with probability θ
and Low with probability 1 − θ. It can be shown that the posterior expected value of θ
when a number k of H-signals have been observed out of n signals is

E(θ|k out of n) =
k + 1
n+ 2

, (7)

while the probability of observing k or more H-signals out of n signals is

P (at least k H-signals) = 1 − [k/(n+ 1)].

We examine three different scenarios.

Perfect communication. In the first scenario investors can freely communicate. This
is the benchmark case. By (7), the highest price that the issuer can charge (if k out of n
investors receive an H-signal) is

p(k) =
k + 1
n+ 2

. (8)

Since the issuer wants to choose the price which maximizes his expected gain, he must
choose a price equal to p(k) for some k = 0, 1, . . . , n. The higher the price, the higher the

30



number of H-signals that must be observed to convince all investors to buy; therefore, the
higher the price, the lower the probability that the IPO will go through.

When choosing a price p(k), the issuer is implicitly betting on the event that at least k
investors will get an H-signal. If the issuer charges the price p(0) = 1/(n+ 2), the price is
so low that all investors will buy independently of the number of H-signals observed. Hence
the IPO will certainly go through and yield a sure profit of n/(n+ 2).

On the other hand, if he charges p(k) with k > 0, his expected gain is

P (at least k H-signals) · p(k) =
(

1 − k

n+ 1

)
k + 1
n+ 2

.

This is maximized for k∗ = n/2. By (8), the optimal price is p(k∗) = 1/2 which yields
an expected profit of [n(n + 2)]/[4(n + 1)]. Since this is greater than the profit n/(n + 2),
p∗ = 1/2 is the optimal price.
Ex. 6.19 Prove that: (i) the issuer never prices above the expected value of θ; (ii) no
successful offerings are overpriced; (iii) offerings are at least as likely to succeed as they are
to fail; and (iv) for large n, the expected profit of the issuer is at most 1/4 per share.

Perfect communication from early to late investors. In the second scenario each
investor observes his own and the private information of the investors who were previously
approached by the underwriter. Now the profits to the seller are path-dependent.

For example, suppose that p = 2/5 and n = 2. If the first investor gets an H-signal
and the second investor an L-signal, the issuer gets a profit of 2 · (2/5). Vice versa, if the
first investor gets an L-signal and the second investor an H-signal, the issuer gets only 2/5.
When the circulation of information is restricted, the profits to the seller may depend on
the order in which signals are revealed to the investors.

Only actions are observable. In the third scenario, late investors knows only whether
early investors purchased or not; that is, only actions are observable. This can start infor-
mational cascades. For instance, suppose that at some point investor i has an H-signal and
finds that it is not in his interest to invest. Then each subsequent investor realizes that i’s
decision not to invest should not be interpreted as i having actually received an L-signal.
Therefore, she will not be able to learn anything from i’s action. This implies that investor
i + 1 faces the same choice (and has the same information) as investor i; so she will not
invest regardless of her signal. By induction, so will all later investors.

Here is an example. Suppose that p = 1/2 − ε and the first three investors observe (in
this order) an H-signal and two L-signals. Primus believes that the value of the project is
2/3 so he purchases. Consequently, Secunda infers that the value of the project is 1/2 and
she purchases as well. The third investor, regardless of his signal, cannot infer the signal
of Secunda. Like her, he will purchase even with an L-signal. This produces a positive
cascade: everybody purchases and the IPO goes through.

Consider now what happens if the first three investors observe (in this order) L, L and H.
They infer share values of 1/3, 1/4 and 2/5 respectively. Regardless of his signal, the third
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investor does not purchase. Then all subsequent investors abstain as well, and a negative
cascade ensues: nobody purchases and the IPO fails.

The example shows that the order in which people with different signals move can
determine the success or the failure of the IPO. This can lead to striking situations. For
instance, imagine the case where there are 100 investors: 99 have observed an L-signal and
only one has had an H-signal. Under perfect communication, nobody should buy and the
IPO should fail. However, if it so happens that the sequencing of moves has the investor
with the H-signal in first place, everybody will purchase and an overpriced offering will be
entirely sold.
Thm. 6.10 Even with an infinite number of investors, for p > 1/3 there is positive prob-
ability that an offering of ultimate value θ < 1 (and in particular an underpriced issue)
fails completely (no investor purchases) because of a negative cascade. For p < 2/3, there is
positive probability that an offering of ultimate value θ > 0 (and in particular an overpriced
issue) succeeds perfectly (all investors buy) because of a positive cascade.

Because of cascades, a well-informed market fails to aggregate information efficiently.
Other phenomena that can be explained by this sort of models include: clumping on an
incorrect decision, low consensus in opinions (when polled) but high uniformity in actions,
fragility (a little bit of information can reverse a long-standing cascade), and strong depen-
dence on initial conditions.

6.4 Excursions

Herding can arise in different ways. Welch (2000) distinguishes six major causes: i) utility
interactions, ii) sanctions on deviants, iii) direct payoff externalities, iv) principal-agent
externalities, v) informational externalities, and vi) irrational behavior. Devenow and
Welch (1996) surveys models based on iii), iv) and v). Welch (2000) updates the refer-
ences therein and provides empirical evidence about herding among financial analysts.
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7. Normal-CARA markets

7.1 Introduction

Suppose that Primus is interested in taking actions that depend on an unknown parameter
y. For instance, he has a utility function u(y) which depends on the value of y. If Primus is a
(subjective) expected utility maximizer, he should pick the action which maximizes the ex-
pected value of his utility computed with respect to his (subjective) probability distribution
for y.

Suppose now that, before making any decision, Primus receives additional information
about y. Then he should update his prior probability distribution to a posterior probability
distribution and use this latter one to choose an optimal action. Updating beliefs when new
information is available, therefore, is crucial for taking informed decisions.

This basic format for taking decisions under uncertainty when new information is re-
vealed is the tenet of Bayesian rationality. Out of the many possible variations, the literature
especially insists on a model where Primus has an exponential utility function and normally
distributed random variables (both prior and posterior). This is made for analytical conve-
nience. This lecture is meant to collect the basic mathematics necessary to deal with the
cara–normal model.

7.2 Updating normal beliefs

Suppose that the parameter Y is normally distributed with mean m and standard deviation
sy > 0. For short, we write Y ∼ N(m, sy). Imagine that Primus can receive signals
about Y . Each signal x is independently and identically distributed according to a normal
distribution with mean y and standard deviation sx > 0; that is, a signal is an (iid) draw
from X ∼ N(y, sx).

We wonder what should be Primus’ posterior distribution for Y after having observed
one signal X. If we denote by g(y) the prior distribution for Y and by f(x|y) the conditional
distribution of the signal, we have respectively

g(y) =
1√

2πsy
exp

[
− 1

2s2y
(y −m)2

]

f(x|y) =
1√

2πsx
exp

[
− 1

2s2x
(x− y)2

]

By Bayes’ rule, the posterior density function for Y given a signal X = x is given by

g(y|x) =
f(x|y) · g(y)∫
f(x|y) · g(y) dy

. (9)
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Carrying out substitutions, we can find the posterior density of Y |x and check that

Y |x ∼ N
( m

s2
y

+ x
s2
x

1
s2
y

+ 1
s2
x

,
1

1
s2
y

+ 1
s2
x

)
. (10)

Three properties are worth being noted. First, the posterior is a normal as well. If
we begin with a normal prior and the signal is normally distributed, the posterior remains
normal. This feature is extensively used in models with rational expectations.

Second, we can simplify (10) by defining the precision of a normally distributed signal
as the inverse of its variance. In particular, let τy = (1/s2y) and τx = (1/s2x) respectively the
precisions of Y and X. Then (10) can be written as

Y |x ∼ N
(
mτy + xτx
τy + τx

,
1

τy + τx

)
. (11)

Thus, the posterior mean of Y |x can be written more simply as the average of the prior
mean and of the signal weighted by their respective precisions. In the following, we make
frequent use of this simple method for computing the expected value of a posterior belief.
Ex. 7.20 After having observed X = x1, Y |x1 is distributed according to (11). Suppose
that Primus receives a second (iid) signal X = x2 and derive his new posterior distrib-
ution for Y |{x1, x2}. Extend your answer to the case where Primus got n (iid) signals
x1, x2, . . . , xn.

Ex. 7.21 If the signal about y has infinite precision, we have s2x = 0 and (10) is no longer
valid. What is the distribution of Y |x when the signal X has infinite precision?

Third, note that the Bayesian posterior beliefs converge to the truth as the number of
signals increase. After n (iid) draws x1, x2, . . . , xn, the variance of the posterior goes to zero
while the Strong Law of Large Numbers implies that the posterior mean converges to m.

7.3 Cara preferences in a normal world

If Primus is an expected utility maximizer with constant absolute risk aversion, his utility
function must be linear or exponential. In particular, if we also assume that he is strictly
risk averse, his utility function over the wealth w must be a negative exponential

u(w) = −e−kw (12)

where k > 0 is his coefficient of (absolute) risk aversion.
Suppose that Primus has preferences which satisfy these assumptions and that his beliefs

are normally distributed so that W ∼ N(µ, σ). You were asked in Exercise 4.3 in Lecture 4
to check that his expected utility can be written

Eu(W ) =
∫ [

−e−kw
]
· 1√

2πσ
exp

[
− 1

2σ2
(w − µ)2

]
dw = − exp

{
−

[
kµ− 1

2
k2σ2

]}
.
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This expression is a function only of the current mean µ and the current variance σ2 of W .
Since − exp(−kw) is a strictly increasing function of w, Primus’ preferences in a cara–normal
world are more simply expressed by the functional

V (µ, σ) = µ− 1
2
kσ2

and we can characterize them using simply the two statistics µ and σ2 and the coefficient
of absolute risk aversion k.
Ex. 7.22 Suppose that W = Y and that the agent has received a signal x such that his
posterior beliefs about Y |x are given by (10). Derive his (posterior) expected utility.

7.4 Demand for a risky asset

Suppose that Primus is an expected utility maximizer with constant absolute risk aversion
k > 0. Assume that there are two assets, one of which is a risky stock and the other is a
riskless bond. The bond has a current price normalized to 1 and will pay a riskless amount
(1 + r) at the end of the period. The stock has a current price of p and will pay a risky
amount Y ∼ N(m, s) at the end of the period. Primus’ current endowment is w. What is
Primus’ optimal portfolio?

Primus is interested in maximizing the expected value of his terminal wealth (at the end
of the period). Assuming that short sales are allowed, he can invest in any portfolio of α
stocks and β bonds such that αp+ β = w. Therefore, β = w − αp. Note that α and β are
unrestricted in sign and may not add to 1.

The terminal value of such a portfolio is normally distributed with mean αm+β(1+r) =
αm+(w−αp)(1+r) and variance α2s2. Hence, the expected utility of Primus of a portfolio
with α stocks is

αm+ (w − αp)(1 + r) − 1
2
kα2s2.

Maximizing with respect to α, this yields Primus’ demand function for stock:

α(p, r;m, s2; k) =
m− p(1 + r)

ks2
. (13)

Note that the demand for the risky stock is separately monotone in each of its arguments;
for instance, it is increasing in the mean m and decreasing in the variance s2.
Ex. 7.23 Provide an economic justification for each of these monotone relationships.
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8. Transmission of information and rational expectations

8.1 Introduction

The main question addressed by rational expectations models is what happens when people
with different information decide to trade. How market prices are affected by traders’ infor-
mation affects how the traders can infer information from market prices. The fundamental
insight is that prices serve two purposes: they clear markets and they aggregate informa-
tion. This dual role can make the behavior of prices and markets much more complex than
assumed in simple models of asset behavior.

Let us begin with an example. Suppose that there are two agents in the market for q
widgets. Primus receives a binary signal about the true value of widgets: if the signal is
H igh, his demand for widgets is p = 5 − q; if the signal is Low, his demand is p = 3 − q.
We say that Primus is informed because his demand depends on which signal he receives.
Secunda receives no signal and offers an unconditional supply of widgets p = 1+q. Morevoer,
assume that, if she could receive signals, Secunda would change her supply to p = 1 + 3q
with an H-signal and to p = 1 with an L-signal.

When Secunda is sufficiently naive, the following situation occurs. If Primus receives
an H-signal, the demand from the informed Primus equates the supply from an uninformed
Secunda at a price of pH = 3 (and q = 2 widgets are exchanged). If he receives an L-signal,
his demand equates the supply from Secunda at a price of pL = 2 (and q = 1 widget is
exchanged). Different prices clear markets for different signals: p = 3 when the signal is H
and p = 2 when it is L.

This outcomes, however, presumes that Secunda does not understand that prices also
convey information. The market-clearing price is p = 3 if (and only if) the signal is H.
Thus, if Secunda sees that markets clear at a price of p = 3 she can infer that Primus has
received an H-signal and this suffices to let her change the supply function to p = 1+3q. But
in this case the market must clear at a price such that 5−q = 1+3q, that is p = 4. Similarly,
if the market-clearing price would be pL = 2, Secunda would understand that Primus got
an L-signal and her supply would switch to p = 1, making this the market-clearing price.

In other words, if Secunda passively lets the prices clear the market, the prices are
pH = 3 and pL = 2. If she exploits the information embedded in different prices, the prices
will be pH = 4 and pL = 1. The first case (pH = 3 and pL = 2) can be an equilibrium
only if we assume that Secunda is not sufficiently rational to understand that prices reveal
information, or to use the information which is revealed by prices. Market-clearing equilibria
with rational agents require that the information embedded in prices is fully exploited, and
this is what the notion of rational expectations equilibrium is about.
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8.2 An example

We consider a two-asset one-period economy in which all random variables are independent
and normally distributed, with strictly positive standard deviations. The two available
assets are a risky stock and a riskless bond. The bond has a current price normalized to 1
and will pay a riskless amount (1+r) at the end of the period. The stock has a current price
of p and will pay a risky amount Y ∼ N(m, sy) at the end of the period. For convenience,
denote by τy = 1/s2y the precision of Y .

There are two traders in the economy. They have identical cara preferences expressed
by the utility function (12), defined over terminal wealth, with k = 1. Primus has an initial
endowment w = m + Z1, where m is the amount of bond he holds and Z1 ∼ N(0, sz) is a
random endowment of stock that he receives at the beginning of the period. Secunda has a
similar endowment w = m+Z2, where Z2 is independent but identically distributed to Z1.
Because of this uncertainty about initial endowments, neither agent knows exactly what
the overall supply Z = Z1 + Z2 of risky asset is.

Primus is an informed trader, while Secunda is uninformed. In particular, Primus
receives a signal X ∼ N(y, sx) about the value of the stock; denote by τx = 1/s2x the
precision of this signal. By (11), Primus’ posterior distribution is

Y |x ∼ N
(
mτy + xτx
τy + τx

,
1

τy + τx

)
.

Therefore, by (13), Primus’ demand for the risky asset is

α1 =
mτy+xτx

τy+τx
− p(1 + r)
1

τy+τx

= mτy + xτx − p(1 + r)(τy + τx).

The uninformed agent receives no signal. However, she knows that trading from the
informed agent affects the price. If she knew how this trading affects the market-clearing
prices, she could extract information about the informed trader’s signal from the market
price.

A rational expectations equilibrium postulates that there is a specific pricing rule P (·)
which links Primus’ information with the market price and let Secunda use this rule to
extract information. In equilibrium, the pricing rule must be correct; that is, Secunda must
extract information that is consistent with Primus’ signal.

Suppose that the pricing rule is linear (we will check this in a moment). That is, assume

p = am+ bx− cZ (14)

for some appropriate coefficients a, b, c to be determined as part of the equilibrium. Given
this pricing rule, Secunda (who is the uninformed trader) can construct the observable
random variable

η :=
p− am
b

= x− c
b
Z.

Since Z ∼ N(0,
√

2sz), this implies that η is an unbiased (but garbled) estimate of the signal
x actually received by Primus. This estimate is garbled by the additional zero-mean noise
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associated with Z. Indeed, as we see from the right-hand side, η ∼ N(m, sx + (c/b)
√

2sz).
Therefore, η is a signal about m that Secunda can use to obtain information about Y .

Let τη be the precision associated with sη = sx +(c/b)
√

2sz; of course, τη < τx. By (11),
Secunda’s posterior distribution for Y is

Y |{P (·), p} ∼ N
(
mτy + ητη
τy + τη

,
1

τy + τη

)
.

Again by (13), Secunda’s demand for the risky asset is

α2 =
mτy+ητη

τy+τη
− p(1 + r)
1

τy+τη

= mτy + ητη − p(1 + r)(τy + τη).

The equilibrium price can be found by equating the aggregate demand α1 +α2 with the
aggregate supply Z. This yields (after substituting for η)

p =
2mτy + x(τx + τη) − Z[1 + (c/b)τη]

(1 + r)(2τy + τx + τη)
.

This expression can be rewritten as p = am+ bx− cZ by appropriately choosing a, b, c such
that

a =
2τy

(1 + r)(2τy + τx + τη)
,

b =
τx + τη

(1 + r)(2τy + τx + τη)
,

c =
1 + (c/b)τη

(1 + r)(2τy + τx + τη)
.

This confirms that the pricing rule conjectured in (14) is linear and concludes the example.
If the aggregate supply Z were not noisy, Secunda could use η to infer exactly what is

the signal x received by Primus. We say that the rational expectations equilibrium is fully
revealing if prices can be used to infer exactly what are the signals. In this case, prices
are sufficient statistics for all the available information and the market is “efficient” in the
strong sense (even private information is embedded in prices).

The rational expectations equilibrium is partially revealing if only a partial inference
is possible, as in the example discussed, where prices reflect both private information and
exogenous noise. Now, if p goes up, Secunda cannot tell whether the cause is more positive
private information (i.e., a higher signal for Primus) or smaller asset supply (i.e., a lower
realization of Z).
Ex. 8.24 Assume that the aggregate supply is known to be z. Note that τη = τx and
compute the fully revealing rational expectations equilibrium.
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8.3 Computing a rational expectations equilibrium

Suppose that there are n traders and j assets. Each trader observes a signal Xi (i =
1, 2, . . . , n) about one or more assets. The construction of a rational expectations equilib-
rium (REE) can be outlined in five steps.

1. Specify each trader’s prior beliefs and propose a pricing rule (which for the moment is
only a conjecture) P c mapping the traders’ information to the prices of the assets. The
pricing rule P c(X1, X2, . . . , Xn, ε) may incorporate some noise ε. The traders takes
this mapping as given. The pricing rule must be determined in equilibrium; at this
stage, it is parameterized by undetermined coefficients because the true equilibrium
price is not known yet.

2. Derive each trader’s posterior beliefs, given the parameterized price conjectures and
the important assumption that all traders draw inferences from prices. The posterior
beliefs depend on the proposed pricing rule (e.g., from the undetermined coefficients).

3. Derive each trader’s optimal demand, based on his (parameterized) beliefs and his
preferences.

4. Impose the market clearing conditions for all markets and compute the endogenous
market clearing prices. Since individual demands depend on traders’ beliefs, so do
prices. This gives the actual pricing rule P a(X1, X2, . . . , Xn, ε) which provides the
actual relationship between traders’ signals and the prices.

5. Impose rational expectations; that is, make sure that the conjectured pricing rule
P c coincides with the actual pricing rule P a. This can be achieved by equating the
undetermined coefficients of P c with the actual P a.

8.4 An assessment of the rational expectations model

The REE provides a few key insights on which the following literature has built upon.

1. Prices play two roles: they clear markets and they convey information.

2. In a fully-revealing equilibrium, individual asset demands depend only on price, not
on the trader’s private information.

3. Therefore, in a fully-revealing equilibrium there is no incentive to invest in costly
information: this incentive is restored in a partially-revealing equilibrium.

On the other sides, there are three important difficulties with the notion of a REE.
First, there is the issue of its existence. If the number of possible signals is finite, then
for a generic set of economies there exists a REE. This result, of course, does not apply
to signals drawn from a normal distribution. Similarly, for j the number of assets in the
economy, if the dimension S of the space of signals is lower than j − 1, then for a generic
set of economies there exists a REE. Intuitively, if there are more prices than signals, there
is sufficient flexibility to both clear markets and aggregate information. On the other hand,
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if S = j − 1, there is an open set of economies for which no REE exists. For instance, in
a model with two assets (a risky stock and a riskless bond) and a one-dimensional signal,
the existence of a REE, while possible, is a fragile result. Finally, for S > j − 1, all weird
things can happen.

Second, there is the issue of how the pricing rule is discovered. In a REE, traders must
know the pricing rule that specifies the equilibrium prices. How such knowledge comes
about, however, is left unspecified. One possible explanation is that it is learned over time,
but learning to form rational expectations is not an easy task. During the learning process,
traders must act according to “wrong” conjectures; their behavior, then, is likely to upset
the emergence of the “correct” conjectures.

Third, there is the issue of price formation. In a REE, it is implicitly assumed that
prices are set by a Walrasian auctioneer which (magically) equates demand and supply.
This implicit auctioneer collects the “preliminary orders” and uses them to find the market-
clearing prices. This avoids the difficulty of actually specifying the actual trading mechanism
but hides the effect of the market microstructure on the process of price formation. In
the next lecture, we will see that the microstructure literature improves on the rational
expectations model by making explicit the process of price determination.

All in all, models based on rational expectations are difficult to construct and difficult to
interpret. The common approach circumvents these difficulties by using specific examples.
While this makes things tractable, the approach is special in the sense that even smaller
deviations from the assumptions in the example may change the equilibrium drastically, or
make it disappear.
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9. Market microstructure: Kyle’s model

9.1 Introduction

The models on market microstructure differ on the assumptions made on how the best
available price is set. In auction models (also known as “order-driven”), the best available
price is defined by the submitted orders. In dealer models (also known as “quote-driven”),
it is defined by dealer quotes.

The rational expectations model can be seen as an example of an (implicit) auction
model. Kyle’s (1985) model improves on this by making it explicit the process by which
prices are formed, while keeping the auction structure and the use of an expectations con-
sistent pricing rule. In particular, Kyle assume batch-clearing; that is, all orders are fulfilled
simultaneously at the same price.

The model assumes that there is a market-maker (named Secunda) who set prices and
thus acts as an auctioneer. Moreover, the market-maker can take trading positions and
has privileged access to information on the order flow. This changes the nature of the
pricing rule because the act of price setting is assigned to a player within the model. The
market-maker must set prices using only the information which is available to him, which
is determined by the trading protocol. This generates a relationship between the price and
the trading protocol.

Besides the market-maker, Kyle assumes that there is one informed agent (named
Primus) and a number of liquidity traders in the market. The market maker aggregates the
orders and clears all trades at a single price. The informed trader chooses those transactions
which maximize the value of his private information. This provides a relationship between
the price and the strategic use of information by the informed trader. Thus price reflects
both the trading protocol and the strategic behavior of the informed trader.

9.2 The model

We consider a one-asset one-period economy, with a zero riskless interest rate. There are
three types of agents: one informed trader (Primus), one uninformed market-maker (Se-
cunda), and many noise traders who trade only for liquidity or hedging reasons. Primus
and Secunda are risk-neutral expected utility maximizers. All random variables are in-
dependent and normally distributed, with strictly positive standard deviations. The only
available asset is a risky stock which will pay a risky amount Y ∼ N(m, sy) at the end of
the period.

Primus is the informed trader, who receives a perfectly precise signal about Y and tus
learns what is the realization Y = y. Secunda is the uninformed market-maker, who knows
only the prior distribution of Y . After Primus learns Y = y, market orders from Primus
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and the noise traders are submitted to Secunda to be executed at a uniform market-clearing
price p. The noise traders submit a random demand Qu ∼ N(0, su); if this is negative, they
are on balance selling. Primus submits a demand Qi without observing the realization of
Qu. The market-maker receives an aggregate demand Q = Qi +Qu; she knows the sum but
not who demanded what.

The market-maker’s pricing rule mandates that she earns zero profits. This is consistent
with free entry of competing market-makers, which impairs any monopoly power of the
single market-maker. This implies that the market-maker sets prices such that p = E(Y |Q).

Primus places an order Qi which maximizes his profit E[(Y − p)Qi|Y = y] = (y− p)Qi.
Primus’ order is influenced by the price quoted by the market maker. At the same time, his
demand Qi affects the price quoted. This strategic interaction between the market-maker
and the informed trader is what makes the model tick: Secunda’s choice of p depends on
Qi and Primus’ choice of Qi depend on p.

Kyle proves that there exists a linear equilibrium for this model such that the market-
maker pricing rule is

P (Q) = m+ αQ (15)

and Primus’ trading rule is
Qi = β(Y −m), (16)

where
α =

1
2
sy
su

and β =
su
sy
. (17)

We will show momentarily a piece of the argument which establishes this result. Before
that, a quick commentary may be useful.

Note that both the pricing and the trading rule depend on the same parameters (al-
though their ratio is inverted). When α is high and orders have a significant price impact,
then β is low because Primus trades less aggressively (to avoid the impact of his own
trades). When sy is high, Primus’ information is more likely to be substantial and therefore
Secunda adjusts price more aggressively. When su is high, Primus’ order is less likely to be
a conspicuous component of the total order flow, and therefore he can afford to trade more
aggressively.

To show that (15) and (16) constitute an equilibrium, we need to prove two facts. First,
that the best reply of Secunda to an insider using the trading rule (16) is precisely (15).
Second, that the best reply of Primus to a market-maker using the pricing rule (15) is
precisely (16). We prove only the first fact, and leave the second as an exercise.

Thus, assume (16). Secunda’s prior for Y is that Y ∼ N(m, sy). Since she observes
the aggregate demand Q = Qi +Qu, she can use this information to update her prior. As
Qi = β(Y −m), the total order flow can be written Q = β(Y −m)+Qu, with Qu ∼ N(0, su).
Dividing Q by β (which is known in equilibrium) and adding m (which is known), Secunda
can construct the observable random variable

η := m+
Qi +Qu

β
= Y +

Qu

β
,
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which is normally distributed with mean Y and standard deviation sη = sy + su/β. This
can be used to make inferences about Y . Exploiting known results from Lecture 7 (with
precisions instead of variances), we obtain

Y |η ∼ N
(
mτy + ητη
τy + τη

,
1

τy + τη

)
.

Looking at E(Y |η) and substituting for τη and τy, we find

E (Y | η ) =
mτy + ητη
τy + τη

=
ms2u + ηs2yβ

2

s2u + s2yβ2
.

Replacing the value of β from (17), this becomes

E (Y | η ) =
1
2
(η +m).

Secunda sets her price equal to her best estimate of Y ; that is, P = E(Y |η). By definition,
η = m+ (Q/β). Hence, the price set by Secunda is:

P = E (Y | η ) =
1
2

(
m+

Q

β
+m

)
= m+

1
2β
Q.

Using again the value of β from (17), it is easy to check that this pricing rule indeed matches
(15), as it was to be shown.

9.3 Lessons learned

There are a few major insights to be gained from Kyle’s model.

1. When setting the price, the market-maker explicitly updates the analysis of fundamen-
tals (corresponding to her prior) with the information embedded in the order flow. She
uses information gathered by the traders as transmitted by their demands. Order flow
communicates information about fundamentals because it contains the trade of those who
analyze/observe fundamentals.

We can actually measure how much of the trader’s information is revealed in Kyle’s
model by looking at the variance of Secunda’s posterior distribution for Y . Before she
observes the order flow, this variance is sy. After she observes Q and updates her prior, the
variance becomes (check the steps!)

V (Y |η) =
1

τy + τη
=

s2ys
2
u

β2s2y + s2u
=
s2y
2
.

This is exactly half of the prior variance s2y. Regardless of the exact value, the important
message is that the updated variance is somewhere in between the prior variance and a
zero variance. If the updated variance were to remain s2y, Secunda would learn nothing and
Primus could make infinite profits. If it were to drop to zero, Primus would make no profit
because all his trades would clear at the perfectly revealing price Y .
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2. Since the market-maker cannot separate informative from uninformative trade, the
transmission of information is noisy and the informed trader can use this to his advantage.
Primus can partially hide his trade from the market-maker in the order flow from the noise
traders, reducing the amount by which price moves against him.

3. Liquidity and market efficiency are deeply related. Efficient markets tend to gravitate
towards constant liquidity, defined as the price impact of orders. To see why, suppose that
liquidity is not constant: for example, suppose it is known that the market will be fairly
illiquid in the next month and then will revert to standard liquidity. Then if Primus buys
10’s worth of stock each day in the next month, each purchase will push the price of the
stock progressively upward. This is because if, Primus’ trades communicate information
about fundamentals, these price increases induced by the order flow should persist. Then,
when at the end of next month liquidity has returned to normality, Primus could suddenly
sell the 300’s worth of stock purchased during the month with almost no price impact and
make a riskless excessive profit similar to an arbitrage opportunity. An efficient market
should prevent making excessive profits.

Kyle (1985) considers a multiple-period extension of his model which generates constant
liquidity in equilibrium. Intuitively, this follows because the informed trader must balance
the effects of his current trades on his future trading opportunities: if he trades too much
too soon, the price will adjust rapidly and his profits will be smaller.

9.4 Excursions

Huddart et alii (2001) modifies Kyle’s model to take into account the case of regulation
requiring insiders to disclose their stock trades after the fact. This accelerates price discovery
and reduces insider profits. Luo (2001) shows that public information is detrimental for the
insider, because it increases the information revealed by the price.
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10. Market microstructure: Glosten and Milgrom’s model

10.1 Introduction

The market in Kyle’s model is “order-driven”: the market-maker sees the order flow and
sets a price which clears the market in a single batch. Demand and supply meet at a single
price and simultaneously. This lecture considers a different trading protocol, possibly closer
to reality, which is “quote-driven” and involves sequential trades. Unlike Kyle’s auction,
this sequential-trade model describes a dealership market.

All trades involve a dealer, who posts bid and ask prices. Traders arrive sequentially and
can trade at the current bid-ask prices. Thus orders are fulfilled sequentially at (possibly)
different prices. After each trade, the dealer updates his bid and ask prices to reflect the
information he has learned from his privileged position. At each trade, the current trader
may be informed or uninformed so the model can accomodate more than one informed
trader.

This trading protocol implies some important differences from Kyle’s model. First,
there is an explicit bid-ask spread, as opposed to the single market-clearing price of Kyle’s
model. Second, the spread occurs even if the dealer is risk-neutral and behaves optimally
incorporating in the price all the information he can extract from the order flow. Third, since
trades occur sequentially, it is possible to analyze explicitly how the information content of
each trade affects the bid-ask spread.

10.2 The model

We consider a one-asset one-period economy, with a zero riskless interest rate. There
are three types of agents: a single dealer (Primus), several informed traders and many
uninformed traders. Both the dealer and the informed traders are risk-neutral expected
utility maximizers, while the uninformed traders trade only for liquidity or hedging reasons.

The only available asset is a risky stock which will pay a risky amount Y at the end
of the period. For simplicity, we assume that it can take only the high value Y = 1 or
the low value Y = 0. The prior distribution is P (Y = 1) = p and P (Y = 0) = 1 − p.
All the informed traders know the realization of Y (because they have received a perfectly
informative signal about it), while Primus does not.

Trading is organized as a sequence of bilateral trading opportunies, taking places one
after the other but always within the end of the period. The pool of potential traders is
given and the dealer knows that q of it are informed traders and (1 − q) are uninformed
traders. At each trading opportunity, one trader is randomly chosen from this pool (with
replacement) and is offered the chance to buy or sell one unit of the stock at the current
bid or ask price. The informed trader can buy, sell, or pass at her discretion. As for the
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uninformed traders, we assume for simplicity that they buy with probability r or sell with
probability 1 − r.

As in Kyle’s model, the dealer sets prices such that the expected profit on any trade is
zero. (This can be justified by assuming a competitive dealers’ market.) This implies that
Primus must set prices equal to his conditional expectation of the asset’s value given the
type of transaction taking place.

More specifically, before trading opportunity t occurs, Primus must offer a bid price bt
and an ask price at such that

bt = E(Y |next trader sells) and at = E(Y |next trader buys). (18)

This rule takes explicitly into account the effect that the sale/purchase of one unit would
have on Primus’ expectations. This makes sure that his prices are “regret-free”, in the sense
that — given the trade that actually occurs — the dealer believes that the price is fair.

Such “regret-free” price-setting behavior makes sure that prices incorporate the infor-
mation revealed by a trade. Due to the signal value of each trade, as trading goes on, the
dealer keeps revising his beliefs and sets new trading prices. This generates a sequence of
bid-ask prices {bt, at} that change over time, paralleling the evolution of Primus’ beliefs.
Let us work out an example and see what happens.

10.3 An example

Suppose p = q = r = 1/2. Denote by Bt and St respectively the event that at the trading
opportunity t there is a buy or a sale. By (18), the ask price at the first trading opportunity
should be

a1 = E(Y |B1) = 1 · P (Y = 1 |B1) + 0 · P (Y = 0 |B1), (19)

while the bid price should be

b1 = E(Y |S1) = 1 · P (Y = 1 |S1) + 0 · P (Y = 0 |S1). (20)

In order to find what a1 should be, we need to compute P (Y = 1 |B1). By Bayes’ rule,

P (Y = 1 |B1) =
P (Y = 1) · P (B1 |Y = 1)

P (Y = 1) · P (B1 |Y = 1) + P (Y = 0) · P (B1 |Y = 0)
. (21)

Since we know by assumption that P (Y = 1) = P (Y = 0) = 1/2, it suffices to determine
P (B1 |Y = 1) and P (B1 |Y = 0). We know that the uninformed traders buy always with
probability 1/2. On the other hand, the informed trader know Y and therefore buy only if
Y is high and sell only if Y is low. That is, they buy with probability 1 if Y = 1 and sell
with probability 1 if Y = 0.

Therefore, conditional on Y = 1, the probability of a buy is 1/2 if it comes from an
uninformed trader and 1 if it comes from an informed trader. Since uninformed and informed
traders are equally likely to come up for trade, the overall probability is P (B1 |Y = 1) =
(1/2)·(1/2)+(1/2)·1 = 3/4. By a similar reasoning, P (B1 |Y = 0) = (1/2)·(1/2)+(1/2)·0 =
1/4. Substituting in (21), we find

P (Y = 1 |B1) =
(1/2) · (3/4)

(1/2) · (3/4) + (1/2) · (1/4)
=

3
4
.
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Ex. 10.25 By a similar reasoning, compute P (S1 |Y = 1) and P (S1 |Y = 0) and deduce
that P (Y = 1 |S1) = 1/4.

By (19) and (20), we obtain that the dealers sets ask and bid prices respectively equal
to

a1 =
3
4

and b1 =
1
4
.

Suppose that there actually occurs a buy at a price of 3/4. What will be the new bid
and ask prices? The probability distribution for Y after a buy is P (Y = 1 |B1) = 3/4 and
P (Y = 0 |B1) = 1/4. This acts as a new prior for the next trading opportunity. Then

a2 = E(Y |B1, B2) = 1 · P (Y = 1 |B1, B2) + 0 · P (Y = 0 |B1, B2)

and
b2 = E(Y |B1, S2) = 1 · P (Y = 1 |B1, S2) + 0 · P (Y = 0 |B1, S2).

We need to compute P (Y = 1 |B1, B2) and P (Y = 1 |B1, S2). By Bayes’ rule,

P (Y = 1 |B1, B2) =
(3/4) · (3/4)

(3/4) · (3/4) + (1/4) · (1/4)
=

9
10
,

which in turn implies a2 = 9/10.
Ex. 10.26 Check that P (Y = 1 |B1, S2) = 1/2 and deduce that b2 = 1/2.

Note that, if a sale had occurred instead of a buy, the price would have been set to
a2 = 1/2 and b2 = 1/10. Therefore, the fact that the first transaction is a buy or a sale
reveals information. On the other hand, since (at − 1)(bt − 0) �= 0 for all t, information is
never fully revealed.

The exercise can be repeated. The exact sequence of bid-ask prices will depend on
the actual trading events. For instance, if the first four events are B1, S2, B3, and B4, the
sequence will be

t bt at trade
1 1/4 3/4 B1

2 1/2 9/10 S2

3 1/4 3/4 B3

4 1/2 9/10 B4

5 3/4 27/28 etc.

A sufficient statistics for the current bid and ask prices is the difference between the number
βt of buys occurred before t and the number σt of sales occurred before t. For instance, if
βt − σt = 0, then bt = 1/4 and at = 3/4.
Ex. 10.27 Suppose that p = r = 1/2 but q = 1/4. Prove that b1 = 3/8 and a1 = 5/8.
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10.4 Comments on the model

The assumptions about the trading protocol are crucial. Informed traders profit from
trading if prices do not yet reflect all the available information. An informed trader prefers
to trade as much (and as often) as possibile. By so doing, informed traders quickly reveal
information which is immediately incorporated in prices.

This cannot occur in the model because the only trader who is allowed to trade is chosen
randomly and she can only buy or sell one unit of stock. Thus, if an informed trader desires
to trade further, she must return to the pool of traders and wait to be selected again.

The probabilistic selection process dictates that the population of traders facing the
dealer is always the same as the population of potential traders. This makes it possible for
the dealer to know the probability that he is trading with an informed trader. Moreover, it
implies that plausible trading scenarios are ruled out. For instance, whenever information is
likely to become more dispersed over time, the fraction of informed traders should increase
with time (and the dealer would need to learn another parameter yet). This cannot occur
here.

An important result of the model is that transaction prices form a martingale. That is,
the best predictor for the transaction price in t+ 1 (given the information It available after
trade t) is the transaction price in t: E(pt+1|It) = pt.

For instance, in the example above, consider the situation after having observed the
first buy. The current price is pt = at = 3/4. The next transaction may come from
an uninformed trader with probability 1/2 or from an informed trader with probability
1/2. The probability that it will be a buy is 1/2 if the next trader is uninformed and 3/4
if he is informed. Therefore, the probability that the next transaction will be a buy is
(1/2) · (1/2) + (1/2)(3/4) = 5/8. Hence, the next price will be 9/10 with probability 5/8
and 1/2 with probability 3/8. Then E(pt+1|It) = (9/10) · (5/8) + (1/2) · (3/8) = 3/4 = pt.

The martingale property dictates that prices respect semi-strong efficiency, in the sense
that they reflect all the information available to the dealer. It can be shown that, in the
limit, all information is revealed and at − bt → 0 with both at and bt converging to 0 or 1
depending on whether, respectively, Y = 0 or Y = 1.

10.5 Lessons learned

There are a few major insights to be gained from Glosten and Milgrom’s model.

1. Information alone is sufficient to induce spreads, independently of the risk attitude of
the dealer or of his inventory costs. The equilibrium spread in this model is such that when
the dealer trades with an informed trader he loses money (as in Kyle’s model, the informed
trader knows exactly the value of the asset). To prevent overall losses, the dealer must offset
them with gains from trading with uninformed traders. The equilibrium spread balances
these losses and gains exactly so that expected profits are zero.

2. Learning takes place over time, as it involves the sequential arrival of distinct orders.
The dealer does not know whether behind a single trade there is an informed trader who
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knows something that the dealer does not, or an uninformed trader who must trade for
reasons unrelated to fundamentals. However, if a preponderance of sales takes place over
time, the dealer adjusts her beliefs and prices downward. The private information gradually
finds its way in the dealer’s prices.

3. There is a process of price discovery behind the (dynamic) adjustment to market ef-
ficiency. The dealer must uncover the private information hidden behind trades before
market prices can be efficient.
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11. Market microstructure: market viability

11.1 Introduction

In Glosten and Milgrom’s (1985) model, spreads arise to protect the dealer from the risk of
trading with an informed trader. However, if the threat of information-based trading is too
high, the necessary spread may be too high for the uninformed traders to keep staying in
the market. If so, they might quit the market, exposing the dealer to a sure loss against the
remaining informed traders. If it is not possible to sustain a spread large enough to let the
dealer break even, the only option is a trading halt in which the market ceases to function.

11.2 An example

Consider a one-asset one-period economy, with a zero riskless interest rate. There are three
types of agents: an informed trader (Primus), a single market maker (Secunda), and nine
uninformed traders. Among the uninformed traders, some are willing to place orders (for
buying or selling) of 5 units, while the others always place orders only for 1 unit. We call
these two types of uninformed traders respectively “big” and “little”.

The only available asset is a risky stock which will pay a risky amount Y at the end of the
period. We assume that Y is randomly distributed over the interval [0, 4] with unconditional
mean m = 2. The informed trader knows the realization of Y (because he has received a
perfectly informative signal about it), while Secunda does not.

Finally, we assume that both the uninformed traders are price sensitive. Any uninformed
trader placing an order of 1 is willing to pay up to a price of 2, equal to the unconditional
mean. On the other hand, the four big uninformed traders are willing to accept a higher
ask price if they decide to place a big order. In particular, U1 is willing to buy his batch of
5 units up to a price of p = 2.3 each; U2 up is willing to buy it up to a price of p = 2.45
each; U3 up to a price of p = 2.6 each; and U4 up to a price of p = 2.9 each.

For simplicity, suppose that Primus knows that the true value of the asset is 4 and
therefore wants to buy the asset. Consider Secunda’s decision about the ask price. She
must a set a price for little orders of 1 unit and a (possibly different) price for big orders
of 5.

We prove that, if Secunda acts competitively, there exists no ask price which can keep the
market open. First, assume that Primus trades big. If Secunda acts competitively, she must
sets a price for a big trade of 5 such that her expected losses to Primus equal the expected
gains from the big uninformed traders. Since there is a one in five chance that the big trade
comes from Primus, the price p must solve the equation (1/5)(p − 4) + (4/5)(p − 2) = 0,
from which p = 2.4.

However, if Secunda were to quote a price p = 2.4, U1 would not pass his order because
the price is too high for him. This would make the number of uninformed big traders
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drop to three, in which case the competitive equilibrium price should solve the equation
(1/4)(p − 4) + (3/4)(p − 2) = 0, from which p = 2.5. At such a price, U2 would drop out
rising the new competitive price (with only two big uninformed traders left) to p = 2.67.

At such a price, U3 would drop out and the new competitive price (with only one big
uninformed trader left) should be p = 3. This would make U4 drop out and the final
competitive price would shoot up to p = 4 (because only the informed trader would be
willing to trade). At this price, however, Primus’ profit would be zero and therefore he
would rather trade a small quantity and make a positive profit. Therefore, the large trade
market would cease to exist.

Thus, assume now that Primus trades a small quantity. Since Primus is informed,
Secunda must set her competitive ask price for a small trade of 1 such that (1/10)(p− 4) +
(9/10)(p− 2) = 0, from which p = 2.1. However, this is higher than the willingness of pay
of any uninformed trader. Therefore, they would quit the market leaving Secunda with no
uninformed customer to offset the sure loss caused by Primus’ order. Then Secunda would
rather close the market (and make a zero profit) than face a sure loss.

11.3 Competitive versus monopolistic market making

The example suggests that asymmetric information may cause trading halts. However,
while trading halts occasionally occur, they are not usual. The question, then, is what
prevents such information-induced difficulties from arising more frequently. One possible
answer is that some characteristics of the trading mechanism make it less responsive to
these difficulties. Glosten (1989) provides a model where this stabilizing feature stems from
the monopoly position of the specialist.

The basic idea is to compare a perfectly competitive dealer market against the “specialist
system” of the New York Stock Exchange, where each investor has to trade through a single
monopolist. In the competitive case, each (risk-neutral) dealer must set the trade price
equal to the asset’s expected value given the trade. This implies that the expected profit
on each and every trade must be zero. As shown in the example, this condition may be too
restrictive and could lead to a market failure.

In the monopolist case, the specialist does not face competition and can use a different
pricing rule. In particular, she can set price so as that they maximize profits on average.
Secunda may willingly accept to be losing money over large trades provided that she can
make enough positive profits on small trades to offset these losses. (This cannot occur in a
competitive equilibrium, because competitors would compete over small trades driving ask
prices down and bid prices up.)

Under asymmetric information, because of the greater protection afforded to the market
maker, a monopolistic regime can lead to a greater social welfare than a competitive regime.

11.4 The basic steps in the model

We consider a one-asset one-period economy in which all random variables are independent
(unless otherwise mentioned) and normally distributed, with strictly positive standard de-
viations. The risky stock will pay a risky amount Y ∼ N(m, sy) at the end of the period.
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Let τy denote the precision of Y .
There are many traders and a single market maker in the economy. Each trader is a

risk-averse expected utility maximizer with the same constant coefficient of (absolute) risk
aversion k > 0. That is, each trader has a utility function u(w) = −e−kw defined over his
terminal wealth w. The market maker (named Secunda) is a risk-neutral expected utility
maximizer.

At the beginning of the period, each trader starts with a known amount of cash c and a
random endowment W0 ∼ N(0, sw) of the risky asset. Finally, each trader receives a noisy
signal X = Y +ε, where ε ∼ N(0, sx). Let τx be the precision of the signal X. A trader may
seek a trade for speculative reasons (taking advantage of his information) or (regardless of
his signal) for liquidity or hedging reasons, such as rebalancing his portfolio.

Let us dub Primus the generic trader and denote by Q the size of his order (with Q
being negative for sales). Then, given the pricing rule p(Q) chosen by the market maker,
Primus’s decision problem is to choose Q so as to maximize the expected utility of his final
wealth

W1 = [c−Q · p(Q)] + (W0 +Q)Y.

By the assumption of normality and cara preferences, and taking into account the informa-
tion associated with Primus’ signal X, we can solve this problem by maximizing

E(W1 |X) − 1
2
kV (W1 |X) = c−Q · p(Q) + (W0 +Q)E(Y |X) − 1

2
k(W0 +Q)2V (Y |X).

Assuming a differentiable pricing rule p(Q) (which is yet to be determined), this leads to
the first-order condition

[Q · p′(Q) + p(Q) −m] (τy + τx) + kQ
τx

= X − kW0

τx
−m. (22)

Now, suppose that the market maker acts in a competitive market. Since Secunda sees
Q, she can calculate the left-hand side of (22) and add m to obtain the signal

η = X − kW0

τx
,

which is normally distributed with mean X and standard deviation sx + sw. This is equiv-
alent to getting a noisy version of the same signal X observed by Primus. Using this
information (revealed by Primus’ order flow), Secunda sets her pricing rule p(Q). Assuming
differentiability of p(Q), Glosten (1989) proves that in the competitive market it has the
form

p(Q) = m+A
(

Q

2α− 1

)
+ k [sgn(Q)] |Q|β,

where α, β = α/(1−α) and A are strictly positive and depend on the precisions of Y,X, and
W0 and on the coefficient of risk aversion k. Moreover, and more importantly, a necessary
condition for a solution to exist is α > (1/2). This leads to two important observations.
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11.5 Lessons learned

First, the pricing rule is upward sloping. Higher orders are filled at higher (and, hence,
worse) prices. This may cause a welfare loss due to the risk of information-based trading.
When a trader transacts for portfolio-rebalancing reasons, the greater the slope, the more
costly is for him to achieve his optimal holding. Instead, with a uniform pricing schedule,
he could move costlessly to his optimal holdings. Glosten (1989) proves that ex ante utility
is strictly inferior under asymmetric information.

Second, a necessary condition for a (differentiable) pricing rule and hence a solution
to exist is α > (1/2). This condition requires that the risk of informed trading is not so
large as to overwhelm the market maker’s ability to set market-clearing prices which let
her break-even. Since α depends on the precisions and the traders’ risk aversion, it can be
lower than (1/2) and therefore there is no guarantee that a trading halt can be avoided.

On the other hand, if we suppose that the market maker acts as a monopolist, she can
choose a pricing rule p(Q) to maximize her expected profits. Glosten shows that there exists
one such rule which guarantees that the market never shuts down. With this pricing strat-
egy, the specialist quotes prices such that she loses money on large trades but makes money
on small trades. Since by normality extreme trades are unusual, Secunda is essentially bet-
ting on the greater frequency of profits from small trades to offset the few occasional losses
from large trades.

This implies that prices for small trades are higher than they would be in a competitive
market. From the viewpoint of a liquidity trader, this is clearly undesirable. On the
other hand, these monopolistic prices makes trade possible where it would otherwise be
not. When the market would otherwise fail, Glosten proves that welfare is higher in a
monopolistic market.
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12. Noise trading: limits to arbitrage

12.1 Introduction

Many models in financial economics rely on the existence of traders who are unable to fully
exploit available information or to correctly maximize their utility. Somehow, these people
fail to behave optimally. They are called “noise traders”.

When there are many noise traders, the market is more liquid in the sense of having
frequent trades that allow people to observe prices. On the other hand, the price of the
stock reflects both the correct information on the part of informed agents and the distortions
generated by the noise traders. The more noise trading, the less information gets into prices,
and therefore the less efficient the market.

As price information gets blurred by the effects of noise trading, speculators and arbi-
trageurs cannot be sure that they are trading on information rather than noise. This limits
their willingness to take large positions and slows down the process by which adjustment to
fundamental values takes place. In effect, it is even possible that noise traders may profit
more than “rational” traders if the amount of noise trading is large enough to sustain an
imbalance that in the short-term favors noise traders.

In the words of Black (1986), “noise creates the opportunity to trade profitably, but at
the same time makes it difficult to trade profitably”.

12.2 A model with noise trading

We begin with a known result. Suppose that Primus is an expected utility maximizer with
a coefficient of constant absolute risk aversion k > 0. Assume that there are two assets, one
of which is a risky stock with a current price of p and a random payoff Y ∼ N(m, s) and
the other is a riskless bond with a current price of 1 and a riskless payoff of (1 + r). Recall
from Lecture 8 that Primus’ demand function for the stock is

α =
m− p(1 + r)

ks2
(23)

Consider now an economy with a riskless bond and a risky stock, where agents live
two periods. Each agent chooses a portfolio of two assets in the first period (when young)
and consumes the payoff from his portfolio in the second period (when old). As time goes
on, generations overlap. In each period, there are old timers who sell the assets in their
portfolios to youngsters.

The riskless asset in each period is a one-period bond which costs 1 in period t and pays
a sure amount (1 + r) in period t + 1. The risky asset is a stock that costs pt in period t
and pays a fixed dividend r in the next period. Therefore, the payoff to one unit of stock
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in the next period is (pt+1 + r), where (based on the information available in period t)
pt+1 is normally distributed with mean Et(p) and standard deviation st. Hence, in period t,
youngsters should regard the stock as normally distributed with payoff Y ∼ N(Et(p)+r, st).

All agents in the economy have the same preferences as Primus. However, there are two
types of agents in the economy with respect to beliefs. A fraction (1− λ) are sophisticated
investors who have rational expectations and correctly believe that the payoff to the stock
is Y ∼ N(Et(p)+ r, st). The remaining λ are noise traders, who in period t misperceive the
expected price of the stock Et(p) by an identical amount εt and wrongly believe that the
payoff to the stock is Y + εt ∼ N(Et(p) + r + εt, st). Note that all noise traders share the
same misperception: this makes the risk associated with their presence nondiversifiable.

We assume that the noise traders’ misperception is a normal random variable εt ∼
N(µ, σ) independent and identically distributed over time. The mean misperception µ is a
measure of the average “bullishness” of the noise traders.

Each agent maximizes his expected utility. By the result recalled above, in each period
t a sophisticated investor demands a quantity

αi
t =

Et(p) + r − pt(1 + r)
ks2t

of the stock, while a noise trader demands a quantity

αn
t =

Et(p) + r + εt − pt(1 + r)
ks2t

= αi
t +

εt
ks2t
.

When noise traders overestimate expected returns, they demand more of the risky asset than
sophisticated investors; when they underestimate, they demand less. Sophisticated investors
have a stabilizing influence because they offset the volatile position of noise traders.

To calculate the equilibrium prices, note that the old sell to the young and so in each
period λαn

t + (1 − λ)αi
t = 1. This implies

pt =
Et(p) + r + λεt − ks2t

1 + r
, (24)

which gives the price of the stock in period t as a function of period t misperception, of the
technological (r) and behavioral (k) parameters of the model, and of the first two moments
of the distributions of pt+1 (conditional on the information available in t).

We consider only steady-state equilibria by imposing the requirement that the uncon-
ditional distribution of pt+1 be identical to the distribution of pt. We can then eliminate
Et(p) by recursive substitution to obtain

pt = 1 +
λ(εt − µ)

1 + r
+
λµ

r
− ks

2
t

r
. (25)

Since all terms but the second one are constant, the one-step-ahead variance of Y is

s2t =
λ2σ2

(1 + r)2
.
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Substituting back into (25), we obtain the final form of the pricing rule

pt = 1 +
λ(εt − µ)

1 + r
+
λµ

r
− kλ2σ2

r(1 + r)2
. (26)

Ex. 12.28 Explicitly carry out the recursive substitution leading to Equation (25).

Interpretation. The last three terms in (26) represent the impact of noise trading on the
price of the stock. As the distribution of the misperception converges to a point mass of
zero (and thus µ→ 0 and σ → 0), the equilibrium pricing function for the stock approaches
its fundamental value of one.

The second term captures the fluctuations in price due to variations in noise traders’
misperceptions. The higher their bullish beliefs, the higher the positive difference between
the current price and the fundamental value. Moreover, the higher the fraction of noise
traders, the higher the volatility of the price of the stock.

The third term captures the permanent effect on price due to the fact that the average
misperception of traders is not zero. If noise traders are bullish on average, there is a
positive “pressure” which raises the price above its fundamental value.

The fourth term shows that there is a systematic underpricing of the stock due to
the uncertainty about noise traders’ beliefs in the next period. Both noise traders and
sophisticated investors in period t believe that the stock is mispriced, but the uncertainty
about pt+1 makes them unwilling to bet too much on this mispricing. In fact, if it were not
for traders’ misperceptions, the stock would not be risky: its dividend is fixed in advance
and the only uncertainty about its payoff comes from pt+1, which is not affected by any
fundamental risk but depends on the noise traders’ misperceptions. In a sense, noise traders
“create their own space”, driving the price of the stock down and its return up.

12.3 Relative returns

The model can also be used to show that the common belief that noise traders earn lower
returns than sophisticated investors and therefore are eventually doomed to disappear may
not be true. All agents earn the same return on the riskless bond. Hence, assuming equal
initial wealth, the difference between noise traders’ and sophisticated investors’ total returns
is the product of the difference in their holdings of the stock and the excess return paid by
a unit of the stock

∆R = (αn
t − αi

t) [pt+1 + r − pt(1 + r)] .

The difference between noise traders’ and sophisticated investors’ demands for the stock
is

(αn
t − αi

t) =
εt
ks2t

=
(1 + r)2εt
kλ2σ2

.

Note that this difference becomes very large as λ becomes small. Noise traders and sophis-
ticated investors take enourmous positions of opposite signs because the small amount of
noise trader risk makes each group think that it has an almost riskless arbitrage opportunity.
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Substituting from (24), the expected value of the excess return (conditional on the
information available in t) is

Et

[
pt+1 + r − pt(1 + r)

]
= ks2t − λεt =

kλ2σ2

(1 + r)2
− λεt.

Therefore, the (conditional) expected value of the excess total return of noise traders is

Et

[
∆R

]
= εt −

(1 + r)2ε2t
kλσ2

.

Taking the unconditional expectation, we have

E
[
∆R

]
= µ− (1 + r)2µ2 + (1 + r)2σ2

kλσ2
, (27)

which can be positive for intermediate (and positive) values of µ. Thus, noise traders
with the right amount of “bullish bias” can earn positive excess returns with respect to
sophisticated investors.

According to De Long et alii (1990), Equation (27) may be interpreted in terms of
four effects. The first µ on the right-hand side of (27) represents the “hold more” effect.
For µ > 0, this increases noise traders’ expected returns relative to sophisticated investors
because noise traders on average hold more of the risky asset and thus earn a larger share
of the rewards to risk bearing.

The first term in the numerator of (27) represents the “price pressure” effect. As noise
traders become more bullish, they demand more of the risky asset and drive up its price.
This reduces the return to risk bearing and thus contrasts the “hold more” effect on the
return differential.

The second term in the numerator represents the “buy high–sell low” effect. Because
of their misperceptions, noise traders have a bad market timing. The more variable their
beliefs are, the more damage their poor market timing does to their returns.

The denominator represents the “create space” effect. A higher variability in noise
traders’ beliefs increases the price risk. To take advantage of noise traders’ misperceptions,
sophisticated investors must bear this greater risk. Being risk averse, however, they reduce
the extent to which they bet against noise traders in response to this increased risk. If this
effect is sufficiently large, it may overcome the “price pressure” and the “buy high–sell low”
effects.
Ex. 12.29 Suppose σ2 = 1. Prove that kλ ≥ 2(1+r)2 is a necessary and sufficient condition
for E [∆R] ≥ 0.

12.4 An appraisal

There is a traditional claim that speculation in asset markets is a price stabilizer. According
to Friedman (1953), “people who argue that speculation is generally destabilizing seldom
realize that this is largely equivalent to saying that speculators lose money, since speculation
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can be destabilizing in general only if speculators on average sell when currency is low in
price and buy when it is high.”

This line of reasoning combines two arguments: first, that rational arbitrageurs push
asset prices towards their fundamental value; second, that over time irrational traders will
have bad results, and therefore be driven out of the market.

De Long et alii (1991) shows that, when noise traders follow positive feedback strategies,
sophisticated investors may prefer to anticipate the bandwagon. This forward–looking spec-
ulators destabilize prices by increasing the volatility of prices. Shleifer and Vishny (1997),
shows that the existence of noise traders is enough to limit the positions of sophisticated
investors in an agency context where professional arbitrageurs must attract outside funding.
Therefore, the first of Friedman’s arguments alone does not suffice to imply the stabilizing
effect.

The model by De Long et alii (1990) discussed here, instead, shows that under reasonable
conditions noise traders can dominate rational traders. A similar point is made in Blume
and Easley (1992) where it is shown that the fitness (in the sense of higher wealth share) and
the rationality (in the sense of utility-based choice) of investment rules may often depart.
Thus, the second argument alone is not conclusive either.

12.5 Excursions

De Long (1990) shows that noise traders may earn higher expected returns than rational
investors. However, since they are risk averse and must also bear more risk, this does
not imply that they enjoy a higher expected utility. Palomino (1996) shows that in an
imperfectly competitive market even a higher utility may occur.
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13. Noise trading: simulations

13.1 Introduction

Models which explicitly include noise trading among their assumptions can be of a few
different kinds. For convenience, we can distinguish three main cases.

First, there are the agents who are (correctly) solving a problem other from the one
under study. For instance, if a trader cares about a longer horizon than the one studied in a
one-period model, his choices may appear nonoptimal in the framework of one-period, even
though they are so over the longer horizon. Similarly, if a trader is solving her personal
hedging or portfolio balancing problem, she may appear to trade for reasons unrelated to
speculation. In some of the earlier lectures, we have implicitly relied on this interpretation
when considering a few examples in which noise trading affects informed agents’ plans.

Second, there are agents who are (incorrectly) solving the problem under study. This
may occur for many reasons, but it is a reasonable approximation that in order to do so
they must be using “wrong” preferences or “wrong” beliefs. They might have heterogenous
priors, or they might be unable to correctly follow Bayes’ rule, or they may not understand
the pricing rule of a rational expectations model, or they might just exchange noise for
valuable information. Whatever the reason impairing the rationality of their choices, it
remains true that non-noise agents must formulate their plans by taking into account the
actions of the noise traders. In the previous lecture, we have relied on this interpretation.

Third, agents’ choices may be rule-driven. When rules are not perfectly rational, they
may lead to noise trading. Consider feedback traders, who base their trading on a rule
driven by the past price dynamics. In particular, when the price of an asset goes up,
positive feedback traders tend to buy it while negative feedback traders tend to sell it. Of
course, this might also be the outcome of a deliberate rational choice. However, whenever
the feedback rule is mechanically imposed, their behavior is ascribed to noise trading. This
lecture discusses two models which fall into this latter category.

13.2 A simple dynamic model

Consider a one-asset economy, with a zero riskless interest rate. Let pt the current price
of the asset and y its long-term expected value. We assume that the value of the asset is
constrained to lie between a minimum m and a maximum M .

There are three types of agents: fundamentalists, noise traders and a single market
maker. For convenience, we assume that all traders of the same type behave identically
and that they are all risk-neutral. Then we can dub Primus a (generic) fundamentalist and
Secunda a (generic) uninformed trader.

Besides the current price pt, Primus uses all the additional information It available to
reach his best estimate ut of the long-term value of the asset. To makes his investment
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decisions, Primus takes into account the difference between his best estimate ut and the
current price pt. Dropping subscripts for simplicity, when u > p a capital gain is expected
and hence Primus buys; similarly, he sells if u − p < 0. Moreover, the larger |u − p|, the
higher is the expected payoff to this strategy. To model this second effect, we assume that
there is a bimodal positive function π over [m,M ] achieving its minimum in p = u; the
higher π, the higher the (expected) profitability and hence Primus’ willingness to trade.

Thus, the excess demand from fundamentalists who base their transactions on the spread
u− p can be modelled as

D1(p) = a · (u− p) · π(p)
for p in [m,M ] and 0 otherwise. The parameter a > 0 measures the strength of fundamen-
talists’ demand. (Note: D1(p) is decreasing over [m,M ], positive and convex over [m,u],
negative and concave over [u,M ].) This matches Black’s (1986) hypothesis that “the far-
ther the price of a stock is from its (investment) value, the more aggressive the information
traders become. More of them will come in, and they will take a larger position.”

While Primus is a sophisticated investor who closely monitors the market, Secunda is
a more simple-minded operator who follows simpler rules. Instead of assessing ut using all
the available information, she uses a simpler adaptive rule such as

ut = pt + s · (pt − y),

where s > 0 measures the speed of the adaptive rule. Using a simple extrapolative rule, Se-
cunda responds only to the spread between the current price and the (long-term) investment
value.

Unlike Primus, Secunda does not have a well-planned strategy for trading, but simply
enters the market when the price is high (expecting it to go up) and exits when it is low.
Given that noise traders chase prices, their excess demand can be modelled as

D2(p) = k · (u− p) = b · (p− y)

for p in [m,M ] and 0 otherwise. The parameter b = ks > 0 measures the strength of noise
traders’ reaction to price movements. Note how Secunda “chases” prices up and down,
following a pattern which may potentially sustain both bull and bear markets.

The market maker is a specialist who equilibrates the market, matching excess demand
out of his inventory. He announces a price pt in each period, and then executes all orders
received at that price filling out excess demand or absorbing excess supply. The market
maker adjusts prices over time to balance his holdings over time while at the same time
moderating his response to avoid destabilizing the market. Given that the aggregate demand
is D1 +D2, we assume that he sets prices such that

pt+1 = pt + c[D1 +D2]

where c > 0 measures the rapidity of the price’s adjustments.
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Simulations and hard results

Substituting numeric values for the parameters, we can run simulations. Day and Huang
(1990) do so for u = y and find out that (for reasonable value of the parameters) the model
generates a time series matching a regime of irregular fluctuations around shifting levels.
That is, we obtain the appearance of randomly switching bear and bull markets.

The intuition is the following. Suppose that p0 is just above y. Secunda enters the
market, while Primus is not much willing to sell. Given the aggregate excess demand, the
market maker must sell from his inventory. This drives the prices up, initiating a bull
market until the price reaches a level at which Primus begins to sell consistent amounts
and creates an excess supply. Then the price is pulled back, yielding a temporary respite
or initiating a bearish regime.

This market admits two types of equilibria. In the (unique) full equilibrium, both
Primus’ and Secunda’s demand is zero; this occurs when p = u and Secunda is in equilibrium
when p = y. In a temporary equilibrium, the aggregate demand is D1 +D2 = 0: Primus’
and Secunda’s demands exactly offset each other.

Depending on the parameters, different kinds of behavior may emerge. For a pictorial
representation, draw the phase diagram of pt+1 versus pt on the interval [m,M ], with the
45-degree line and the price adjustment function which has a local minimum near m and
a local maximum near M (the function is initially convex and then concave). There are
four cases: a) bullish market, when the price adjustment function crosses the 45-degree line
(from above) only once near m; b) bearish market when this happens (from above) only
once near M ; c) stable market when it crosses (from above) only once in y; and d) “bear
and bull” if it crosses thrice, one (from above) at pm (near m), one from below) at y and
one (from above) at pM (near M). For u = y, only Cases c) and d) may occur.

For the case we are most interested in, a useful distinction concerns the sign of [D′
1(y)+b].

If this is negative, the demand from Primus at p = y locally overwhelms the demand from
Secunda: we say that flocking is weak; otherwise, we say that it is strong.
Thm. 13.11 Suppose D′

1(y) < 0. If flocking is weak, prices converge to y for c < c∗ =
−2/[D′

1(y) + b] and locally unstable 2-period cycles around y arise for c > c∗. If flocking is
strong, the full equilibrium is unstable.

Case d) above occurs under strong flocking where, for instance, there are prices high
enough between the equilibrium price pM and M to make excess demand from Primus fall
so precipitously that the price is pulled below y. Then Secunda interprets this as a signal
of a further fall and there is a negative feedback effect initiating a dramatic fall in prices.
A similar fluctuation arises on the other side.
Thm. 13.12 For appropriate (and robust) values of the parameters, the following may
occur

1. Chaos: perpetual, erratic speculative fluctuations.

2. Switching regimes: stock prices switch between bull and bear markets at random
intervals with irregular fluctuations around a low and a high level respectively.

3. Ergodicity: the frequency of observed prices converges.
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4. Appearance of deceptive order: the price trajectory may pass close to cycles of varying
periodicities but, as these are unstable, it will eventually be driven away.

Lessons learned

The simulations and the theorems are valid for u = y, but the conclusions do not change
much if u �= y. For instance, if u > y, Primus has bullish expectations and we obtain the
bullish market described as Case a). This market will have fluctuations with an occasional
long run-up followed by a sharp pullback. Of course, as u changes over time due to infor-
mation arrival, the switch between bullish and bearish regimes may be driven by exogenous
shocks.

As u may change over time, Secunda may occasionally sell at prices above her purchase
price. However, in general, she will buy high and sell low, acting as the sheep to be sheared
by Primus. How can her behavior survive? A piece of the answer is that she is most
often right than not. When Secunda buys in, the market usually goes up (except for a few
occasional sharp drops). So, when she buys near the peak and the price falls, she might
attribute this to a timing problem: she just bought too late.

The possibility of cycles makes technical trading possible. However, if chaos occurs,
cycles of all orders are possible. Therefore, assuming that there are enough feedback traders,
technical trading may be temporarily effective, but sooner or later it is likely to go astray.

13.3 An artificial stock market

A financial market involves a group of interacting agents, who adapt to the arrival of new
information and update their model of the world. Modelling this aspect is not easy, but
simulations may be used to gain some insight. LeBaron et alii (1999) is a good example.
They simulate an artificial stock market where agents can add variable selection to their
forecasting problem.

Consider an economy with a riskless bond and a risky stock, extending over several
periods. In each period, the bond pays a constant rate of interest r and the stock pays a
stochastic dividend dt which follows the autoregressive process dt = δ + ρ(dt−1 − δ) + εt,
where εt is a zero-mean normally distributed random variable.

There are 25 shares of the stock and 25 agents trading, each of which is an expected
utility maximizer with the same (constant) coefficient of absolute risk aversion k. In each
period, an agent acts myopically to maximize his expected utility with respect to his current
beliefs. If stock prices were normally distributed, there would be a rational expectations
equilibrium where each agent holds one share and the price of the stock in one period is a
linear function of the dividend paid in that period: pt = αdt + β.

However, the interaction of agents using different forecasting models can upset this
equilibrium and change the distribution of stock prices. In this simulated market, each
agent is endowed with the capacity of using his own several forecasting rules. Some are
based on fundamental information such as the dividend-price ratio and others on technical
information such as moving averages. These rules may apply at all times, or in certain
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specific cases. They are monitored for accuracy and only the best rules are actually used in
forecasting. After a chunk of trading periods, each agent reexamines the rules, eliminates
the worst ones and generate new ones.

In each period, each agent uses his best available forecasting rule to determine his
demand for shares. A (fictitious) auctioneer clears the market fixing a price which balances
the demand and the fixed supply of shares. At the end of each period, each agent updates
the accuracy of his forecasting rules against the realized stock price.

Simulations are run under the assumption of slow or fast learning, which refers to the
frequency with which agents revise their forecasting rules. We mention only the most
significant departures from the benchmark case of the rational expectations equilibrium.
First, the stock price has a significantly greater kurtosis, especially under fast learning.
Under fast learning there is some evidence of technical trading predictability, although
technical trading is not consistently useful and its impact undergoes large swings over
time. Trading volume series are highly persistent and there are significant cross correlations
between volume and volatility, as is the case in actual stock markets.
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14. Behavioral finance: evidence from psychology

14.1 Introduction

Most economic theory deals with an idealized homo œconomicus who embodies principles
of rational decision-making such as expected utility maximization, Bayesian learning and
rational expectations. However, psychologists have amassed a great deal of evidence that
human beings depart from the idealized picture in many ways.

The building blocks of the decision-making process of the homo œconomicus are beliefs
and preferences. He makes judgements about the probabilities and assigns values (or util-
ities) to outcomes. By combining these together, he derives preferences about uncertain
options.

The point repeatedly made by psychologists is that actual people’s judgements are sys-
tematically wrong in many ways. These systematic errors of judgement are called biases.
They are further aggravated by distortions in evaluating preferences or by improper com-
binations of probabilities and values.

For instance, people tend to use heuristics and shortcuts to make their probabilistic
judgements and their preferences are often influenced by how a problem is framed. The
purpose of this lecture is to make you aware of the most important findings and some of
their consequences for predicting investors’ behavior in financial markets.

14.2 Judgement biases

Overconfidence. Most people cannot correctly calibrate their probabilistic beliefs. Sup-
pose you are asked:
State your 98% confidence interval for the SP500 one month from today.
and then your prediction is compared against the actual outcome. Repeat this exercise
many times. If you are good at probabilistic judgements, you should expect to encounter
about 98% of outcomes inside the confidence interval and thus be “surprised” only 2% of
the times. Most people, instead, experience surprise rates between 15 and 20%. Thus,
beware the investor who is 99% sure.

Hindsight. After an event has occurred, people cannot properly reconstruct their state
of uncertainty before the event. Suppose you are asked:
On the day before the event, what was your probability of a 5% drop in the SP500?
After the facts, financial pundits and common investors believe that they have an exact
explanation for what happened. It almost seems that the event was so inevitable that it
could have been easily predicted. Hindsight has two important consequences. First, it tends
to promote overconfidence, by fostering the illusion that the world is more predictable than
it is. Second, it often turns (in investors’ eyes) reasonable gambles into foolish mistakes.
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Optimism. Most people entertain beliefs biased in the direction of optimism. Suppose
you are asked:
Is your ability as a driver above or below the median?
and that the same question is posed to the members of a group. Usually, about 80% of
the people believe that they are above the median. The combination of optimism and
overconfidence leads investors to overestimate their knowledge and underestimate risks,
leaving them vulnerable to statistical surprises. It also fosters the illusion of control, which
makes people believe that risk can be managed by knowledge and trading skill. In a survey
admistered to 45 investors, De Bondt (1998) reports that 89% agree with the statement “I
would rather have in my stock portfolio just a few companies that I know well than many
companies that I know little about” whereas only 7% agree with the statement “Because
most investors do not like risk, risky stocks sell at lower market prices” and just 18% agree
with the statement that “The risk of a stock depends on whether its price typically moves
with or against the market.”

Spurious regularities. People tend to spot regularities even where there is none. Sup-
pose you are asked:
Which sequence is more likely to occur if a coin is tossed — HHHTTT or HTHTTH?
Although the two sequences are equally likely, most people wrongly believe that the second
one is more likely. Odean (1998) reports that, when individual investors sold a stock and
quickly bought another, the stock they sold on average outperformed the stock they bought
by 3.4% in the first year (excluding transactions costs). This costly overtrading may be
explained in terms of spurious regularities and overconfidence. A very frequent error is the
extrapolation bias which makes people optimistic in bullish markets and pessimistic in bear
markets. De Bondt (1993) reports that the average gap between the percentage of investors
who is bullish and the percentage who is bearish increases by 1.3% for every percentage
point that the Dow Jones raises in the previous week.

14.3 Distortions in deriving preferences

Changes matter more than states. People’s preferences are especially sensitive to
changes. Suppose you are asked two questions:
A: Imagine than you are richer by Euro 20,000 than you are today. Would you prefer an
additional gain of 5,000 for sure or a 50–50 chance for a gain of 10,000?
B: Imagine than you are richer by Euro 30,000 than you are today. Would you prefer an
additional loss of 5,000 for sure or a 50–50 chance for a loss of 10,000?
Although the final outcomes in the two problems are exactly the same, most people choose
the gamble in Question A and the sure loss in Question B. Apparently, they tend to favor
the narrow framing based on gains and losses rather than the broader (and more relevant)
framing based on the final wealth.
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Loss aversion. People’s sensitivity to losses is higher than their sensitivity to gains.
Suppose you are asked the question:
Consider a bet on the toss of the coin. If heads, you lose Euro 100. What is the minimum
gain if tails that would make you accept the gamble?
Most answers typically fall in the range from 200 to 250, which reflects a sharp asymmetry
between the values that people attach to gains and losses.

Probability weighting. With respect to the expected utility paradigm, people tend to
weigh probabilities differently. Suppose you are asked:
Given a chance for a gain of Euro 20,000, would you pay more to raise the probability of
gain from 0 to 1%, from 41 to 42%, or from 99 to 100%?
While expected utility predicts that the answer should be the same, most people would
pay significantly less for raising the probability to 42%. In particular, low probabilities are
overweighted: people tend to find a 1% chance of winning Euro 1,000 preferable to a sure
Euro 10.

Prospect theory. The distortions in this section are often modelled using the prospect
theory proposed in Kahneman and Tversky (1979), which suitably modifies the expected
utility formulation. The major modifications are three. First, the utility function is defined
over changes in wealth rather than wealth levels. Second, the slope of the utility function
over changes in wealth is greater for losses than for gains. Third, the agent generates
decision weights wi from the probability distribution and maximizes

∑
wiu(xi). Note that

the decision weights are not necessarily interpretable as probability weights. This basic
model is often enrighed by the assumption that the utility function is concave over gains
and convex over losses: people are risk averse when dealing with gains and risk prone when
dealing with losses.

Shape and attractiveness. The following table list eight gambles in Euros as ranked
by financial analysts according to their attractiveness to investors. They have the same
expected value and the same number of possible outcomes.

Gamble Payoff 1 Prob.ty (%) Payoff 2 Prob.ty (%)
A 5,000 95 105,000 5
B 5,000 50 15,000 50
C 1,000 10 11,000 90
D 1,000 90 91,000 10
E 2,000 50 18,000 50
F 0 50 20,000 50
G −2, 000 90 118,000 10
H −5, 000 50 25,000 50

The ideal gamble combines a high probability of a moderate gain and a small probability of
a very large gain. Its preferability may be explained by a combination of the overweighting
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of the small probability of a large gain and of the different risk attitudes over gains and
losses.

14.4 Framing effects

Reference point. People’s trading decisions are affected by reference points which act
as performance benchamrks. Suppose you are asked the question:
Primus owns 100 shares of an asset, originally bought at 100. Secunda owns 100 shares of
the same asset, originally bought at 200. The price of the share was 160 yesterday and it is
150 today. Who is more upset?
It is the initial price who determines how the stock is doing. A consequence of this is the
disposition effect: an investor who needs cash and owns two stocks is much more likely to
sell the stock whose price has gone up; see Odean (1998a).

Compartmentalization. People often fail to take into account the joint effect of their
decisions. Suppose you are asked the question:
You face two concurrent decisions. Examine both decisions and state the options you prefer
for each decision.
Decision A: choose between a sure gain of 2,400 and a 25% chance of a gain of 10,000.
Decision B: choose between a sure loss of 7,500 and a 75% chance of a loss of 10,000.
In accord with loss aversion, most people tend to choose the sure gain in A and the gamble
in B. Now, consider the following question:
Choose between a 25% chance to win 2,400 and a 75% chance to lose 7,600 versus a 25%
chance to win 2,500 and a 75% chance to lose 7,500.
There is no doubt about the right choice: the second option dominates the first one. How-
ever, note that the pair chosen in the first question amounts to the inferior option, while
the pair rejected is equivalent to the dominating choice. People find it easier to deal with
decisions one at a time and tend to forget the overall picture. A common effect is the use
of a “mental accounting” strategy by which people classify their savings (or expenses) in
different segments and deal with them in different ways; for instance, a windfall rise in
income rarely finds its way in the (mentally separated category of) retirement savings or
health insurance.
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15. Behavioral finance: asset pricing

15.1 Introduction

There is an enourmous discrepancy between returns on stocks and fixed income securities.
Between 1926 and 1990, for instance, the annual real rate of return on U.S. stocks has been
about 7%, while the real return on U.S. treasury bills has been less than 1% percent. Mehra
and Prescott (1985) shows that the combination of a high equity premium, a low risk-free
rate, and smooth consumption cannot be reconciled with plausible levels of investors’ risk
aversion within a standard paradigm of expected utility maximization. This has become
known as the equity premium puzzle.

Mehra and Prescott estimate that the coefficient of relative risk aversion should be higher
than 30 to explain the historical equity premium, whereas previous estimates and theoretical
arguments suggest that the actual figure should be close to 1. A coefficient of relative risk
aversion close to 30 corresponds to a situation like the following one: suppose that Primus is
offered a 50–50 gamble between USD 100,000 and USD 50,000; then his certainty equivalent
should be around USD 51,209. Certainly this is an extreme risk aversion.

Reitz (1988) has argued that the equity premium may be a rational response to a
time-varying risk of economic catastrophe, as bonds protect capital investment better than
equity. This explanation is not testable. Moreover, since the data from 1926 contain the
1929 crash, the catastrophe in question must be of greater magnitude. Also, the hypothetical
catastrophe should affect equity but not bonds: thus, hyperinflation would not qualify.

A different line of research has managed to explain part of the equity premium intro-
ducing nonexpected utility preferences. In particular, Constantinides (1990) suggested a
habit-formation model in which the utility of consumption depends on past levels of con-
sumption as well. People become averse to reductions in their consumption and this may
be used to explain the equity risk premium. Campbell and Cochrane (1999) perfect this
intuition with a carefully crafted model. While this sort of models are probably on the
right track, emphasizing only consumption-based habit-forming neglects the weighty role of
pension funds, endowments, and very wealthy individuals with long horizons.

This leaves us with two questions that are still open: why is the equity premium so
large, and why is anyone willing to hold bonds? This lecture is meant to show you how this
sort of questions can be approached using insights from behavioral finance.

15.2 Myopic loss aversion

Benartzi and Thaler (1995) puts forth a behavioral explanation of the equity premium
puzzle based on a partial equilibrium model. They exploit two ideas from the psychological
evidence about of decision-making.
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The first notion is loss aversion, which refers to the tendency for individuals to be more
sensitive to reductions in their levels of well-being than to increases. This translates into a
slope of the utility function which is greater over wealth decrements than over increments.

The second notion is mental accounting, which refers to the practice of implicitly ear-
marking financial outcomes as belonging to different accounts. This bears relevance on how
outcomes are aggregated: because of loss aversion, aggregation rules may not be neutral.

Here is an example drawn from Barberis and Huang (2001). An investor named Primus
exhibits loss aversion, modelled by a utility function over wealth increments such as u(x) = x
if x ≥ 0 and u(x) = 2x if x < 0. Primus is thinking about buying a portfolio of one share
each of two stocks, which are currently trading at 100. Primus believes that their values one
year from now will be either 70 or 150 with equal probability and that the two distributions
are stochastically independent.

If Primus is loss averse over portfolio fluctuations, the expected utility of the investment
is

1
4
u(100) +

1
2
u(20) +

1
4
u(−60) = 5;

while if he is loss averse over individual stock fluctuations, it is

2
[
1
2
u(50) +

1
2
u(−30)

]
= −10,

which is obviously not as attractive.
The relevance of mental accounting for the equity premium puzzle can be seen by con-

fronting Primus with the choice between a risky asset paying an expected 7% per year
with standard deviation of 20% and a safe asset yielding a sure 1%. The attractiveness
of the risky asset depends on the time horizon of the investor, which is another form of
mental accounting. The longer Primus’ investment horizon, the more attractive the risky
asset, provided that the investment is not evaluated frequently. It is the combination of loss
aversion and a short evaluation period (which we call myopic loss aversion) that makes the
investor unwilling to bear the risks associated with holding equities.

15.3 A partial equilibrium model

Let us go back to the equity premium puzzle. Suppose that Primus’ preferences conform
to prospect theory. With respect to the standard expected utility formulation, this makes
three important modifications to take into account observed behavior: i) utility is defined
over wealth increments; ii) it exhibits loss aversion; ii) the expected utility

∑
wiu(xi) is

computed using decision weights wi which distort the actual probabilities.
The second element necessary to build a multi-period model is a specification of the

length of time over which an investor aggregates returns; that is, his evaluation period.
This is not his investment horizon. Consider a young investor saving for retirement 30
years off in the future who gets a newsletter from his mutual fund every quarter. If he
experiences the utility associated with his wealth increments every quarter (when he gets
the newsletter), this agent has an evaluation period of three months and an investment
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horizon of thirty years. Accordingly, he will behave as someone else whose investment
horizon is just one quarter.

Mehra and Prescott (1985) investigates the equity premium by asking how risk averse
should be the representative investor to explain historical evidence. Benartzi and Thaler
(1995) approaches the puzzle by asking how long should be the evaluation period of an
investor with prospect theory preferences to explain the equity premium.

An answer is obtained using simulations based on the historical (1926–1990) monthly
returns on stocks, bonds, and treasury bills. The stock index is compared both with treasury
bills returns and with five-year bond returns, and these comparisons are done both in real
and nominal terms. It is argued that the use of bonds is preferable because they are more
profitable substitutes for long-term investors. And it is argued that nominal terms are
preferable because they are used in most annual reports (and because evaluation in real
terms would yield negative prospective utility over most periods). However, the results
remain robust under any of the four possible specifications.

It is found that the evaluation period that makes a portfolio of 100% stock indifferent
to a portfolio of 100% bonds in nominal terms is about 13 months. (If the comparison is
made in real terms, the equilibrium period is between 10 and 11 months. If bills are used in
place of bonds, this period is one month shorter.) This suggests that an evaluation period
of about 12 months may lead people to consider bonds as feasible alternative to stocks.

An obvious criticism to this findings is that most people prefer to invest in portfolios
containing both stocks and bonds. A second simulation is thus run, checking (under 10%
increments) which mix of bonds and stocks would maximize prospective utility. Portfolios
carrying between 30 and 55% of stocks all yield approximately the same prospective value.
This result is consistent with observed behavior. For instance, the most frequent allocation
in TIIA-CREF (a very large defined benefit retirement plan in U.S.) is 50-50.

As the evaluation period lenghtens, stocks become more attractive. The actual equity
premium in the data used was 6.5% per year, and this is consistent with an evaluation
period of one year. What happens if the evaluation period lengthens? With a two-year
evaluation period, the premium falls to 4.65; with a five-year period, it falls to 3.0%, and
with 20 years to 1.4%. Therefore, assuming 20 years as the benchmark case, we can say
that the price of excessive vigilance is about 5.1%.

A common asset allocation for pension funds has about 60% in stocks and 40% in
bonds. Given that it is reasonable to assume that pension funds have an infinite investment
horizon, they should favor stocks much more. A possible explanation links myopic loss
aversion with an agency problem. Although the pension fund has an infinite investment
horizon, its managers must report annually on the performance of their investments and
cannot afford negative returns over long periods. Their choice of a short horizon creates a
conflict of interest between the manager and the stockholders.

Another source of a conflict of interest is the rule adopted in foundations and trusts that
only a fixed percentage of an n-year moving average of the value of the endowment (usually,
n ≤ 5) can be spent every year. The goals of maximizing the present value of spending
over an infinite horizon versus maintaining a steady operating budget compete against each
other.
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15.4 An equilibrium pricing model

Barberis et alii (2001) builds on Benartzi and Thaler (1995) to provide a behavioral expla-
nation of the equity premium puzzle based on an equilibrium pricing model. The new twist
they add is that prior outcomes influence the way gains and losses in wealth are experienced.

Thaler and Johnson (1990) finds that a loss is less painful to people when it comes
after substantial earlier increases in wealth: the earlier gains “cushion” the subsequent loss
and make it more bearable. In financial markets, this translates into a behavior such that
investors care less for a market dip that follows substantial prior gains because they are
“still up, relative to a year ago.”

Starting from an underlying consumption growth process with low variance, the combi-
nation of prospect theory and the effect of prior outcomes can generate stock returns with
high mean, high volatility and significant predictability, while maintaining a riskless inter-
est rate with low mean and volatility. This is obtained in a Lucas-style consumption-based
asset pricing model with a continuum of identical infinitely-lived agents and two assets: a
riskfree asset in zero net supply and a risky asset with a total supply of one unit. Except for
the modifications in investors’ preferences, the (representative) investor (named Primus) is
fully rational and dynamically consistent.

The driving force in the model is a story of changing risk aversion. After a run-up
in prices, Primus is less risk averse because those gains will cushion any subsequent loss.
After a fall in stock prices, he is more wary of further losses and hence more risk averse.
This variation in risk aversion allows returns to be much more volatile than the underlying
dividends: an unusually good dividend raises prices, but this price increase also makes
Primus less risk averse, driving prices still higher.

This process generates a predictability in returns very similar to what is empirically
observed: following a significant rise in price, the investor is less risk averse and subsequent
returns are therefore on average lower. Moreover, since the high volatility of returns leads
to frequent losses for stocks, the loss averse investor requires a high equity premium to be
willing to hold stocks.
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